№ п/п Годы Годовые расходы м 3 /с Q o К-1 (к-1) 2
1 2 3 4 5 6 7
1 1963 207,52 169,79 1,22 0,22 0,0494
2 1964 166,96 169,79 0,98 -0,02 0,0003
3 1965 137,40 169,79 0,81 -0,19 0,0364
4 1966 116,30 169,79 0,68 -0,32 0,0992
5 1967 182,25 169,79 1,07 0,07 0,0054
6 1968 170,59 169,79 1,00 0,00 0,0000
7 1969 242,77 169,79 1,43 0,43 0,1848
8 1970 166,76 169,79 0,98 -0,02 0,0003
9 1971 112,24 169,79 0,66 -0,34 0,1149
10 1972 131,85 169,79 0,78 -0,22 0,0499
11 1973 222,67 169,79 1,31 0,31 0,0970
12 1974 185,51 169,79 1,09 0,09 0,0086
13 1975 154,17 169,79 0,91 -0,09 0,0085
14 1976 127,72 169,79 0,75 -0,25 0,0614
15 1977 201,62 169,79 1,19 0,19 0,0352
16 1978 190,26 169,79 1,12 0,12 0,0145
Всего: 2716,59 16 0,00 0,77

С v = = = = 0,226 .

Относительная средняя квадратическая ошибка средней многолетней величины годового стока реки за данный период равна:

5,65 %

Относительная средняя квадратическая ошибка коэффициента изменчивости С v при его определении методом моментов равна:

18,12 %.

Длина ряда считается достаточной для определения Q o и C v , если 5-10%, а 10-15%. Величина среднего годового стока при этом условии называется нормой стока. Если и (или) больше допустимой ошибки - необходимо удлинить ряд наблюдений.

3. Определение нормы стока при недостатке данных методом гидрологической аналогии

Река-аналог выбирается по:

– сходству климатических характеристик;

– синхронности колебаний стока во времени;

– однородности рельефа, почвогрунтов, гидрогеологических условий, близкой степени покрытости водосбора лесами и болотами;

– соотношению площадей водосборов, которые не должны отличаться более чем в 10 раз;

– отсутствию факторов, искажающих сток (строительство плотин, изъятие и сброс воды).

Река-аналог должна иметь многолетний период гидрометрических наблюдений для точного определения нормы стока и не менее 6 лет параллельных наблюдений с изучаемой рекой.

Годовые модули стока р.Учеба и реки-аналога Таблица 5.

год M, л/c*км2 Mан, л/c*км2
1963 5,86 6,66
1964 4,72 4,55
1965 3,88 3,23
1966 3,29 4,24
1967 5,15 6,22
1968 4,82 8,19
1969 6,86 7,98
1970 4,71 3,74
1971 3,17 3,03
1972 3,72 5,85
1973 6,29 8,16
1974 5,24 5,67
1975 4,36 3,97
1976 3,61 5,15
1977 5,70 7,49
1978 5,37 7,00

Рисунок 1.

График связи среднегодовых модулей стока реки Учеба и реки-аналога

По графику связи М о равно 4,9 л/с.км 2

Q O = М о* F;

Коэффициент изменчивости годового стока:

С v =A C va ,

где С v – коэффициент изменчивости стока в расчетном створе;

C va – в створе реки-аналога;

М оа – среднемноголетняя величина годового стока реки-аналога;

А – тангенс угла наклона графика связи.

В нашем случае:

С v = 0,226; A=1,72; М оа =5,7 л/с*км 2 ;

Окончательно принимаем М о =4,9; л/с*км 2 , Q O =163,66 м 3 /с, С v =0,046.

4. Построение и проверка кривой обеспеченности годового стока

В работе требуется построить кривую обеспеченности годового стока, воспользовавшись кривой трехпараметрического гамма-распределения. Для этого необходимо рассчитать три параметра: Q o – среднюю многолетнюю величину (норму) годового стока, C v и C s годового стока.

Используя результаты расчетов первой части работы для р. Лаба, имеем Q O = 169,79 м 3 /с, С v = 0,226 .

Для заданной реки принимаем C s =2С v =0,452 с последующей проверкой.

Ординаты кривой определяем в зависимости от коэффициента С v по таблицам, составленным С.Н. Крицким и М.Ф. Менкелем для C s =2С v . Для повышения точности кривой необходимо учитывать сотые доли С v и провести интерполяцию между соседними столбцами цифр. Занести в таблицу ординаты кривой обеспеченности.

Координаты теоретической кривой обеспеченности. Таблица 6

Обеспеченность, Р% 0,01 0,1 1 5 10 25 50 75 90 95 99 99,9
Ординаты кривой (Кр) 2,22 1,96 1,67 1,45 1,33 1,16 0,98 0,82 0,69 0,59 0,51

Построить кривую обеспеченности на клетчатке вероятностей и проверить ее данные фактических наблюдений. (Рис.2)

Таблица 7

Данные для проверки теоретической кривой

№ п/п Модульные коэффициенты по убыванию К Фактическая обеспеченность

Р =

Годы, соответствующие К
1 1,43 5,9 1969
2 1,31 11,8 1973
3 1,22 17,6 1963
4 1,19 23,5 1977
5 1,12 29,4 1978
6 1,09 35,3 1974
7 1,07 41,2 1967
8 1,00 47,1 1968
9 0,98 52,9 1964
10 0,98 58,8 1970
11 0,91 64,7 1975
12 0,81 70,1 1965
13 0,78 76,5 1972
14 0,75 82,4 1976
15 0,68 88,2 1966
16 0,66 94,1 1971

Для этого модульные коэффициенты годовых расходов нужно расположить по убыванию и для каждого из них вычислить его фактическую обеспеченность по формуле Р = , где Р – обеспеченность члена ряда, расположенного в порядке убывания;

m – порядковый номер члена ряда;

n – число членов ряда.

Как видно из последнего графика, нанесенные точки усредняют теоретическую кривую, значит, кривая построена правильно и соотношение C s =2 С v соответствует действительности.

Расчет делится на две части:

а) межсезонное распределение, имеющее наиболее важное значение;

б) внутрисезонное распределение (по месяцам и декадам), устанавливаемое с некоторой схематизацией.

Расчет выполняется по гидрологическим годам, т.е. по годам, начинающимся с многоводного сезона. Сроки сезонов начинаются едиными для всех лет наблюдений с округлением их до целого месяца. Продолжительность многоводного сезона назначается так, чтобы в границах сезона помещалось половодье как в годы с наиболее ранним сроком наступления, так и с наиболее поздним сроком окончания.

В задании продолжительность сезона можно принять следующий: весна-апрель, май, июнь; лето-осень – июль, август, сентябрь, октябрь, ноябрь; зима – декабрь и январь, февраль, март следующего года.

Величина стока за отдельные сезоны и периоды определяется суммой среднемесячных расходов. В последнем году к расходу за декабрь прибавляются расходы за 3 месяца (I, II, III) первого года.


Расчет внутригодового распределения стока р.Учеба методом компоновки (межсезонное распределение) . Таблица 8
Год Расход воды за сезон зима(лимитирующий сезон) Зимний сток Qм сток за маловодный межен.период К К-1 (К-1)2 Расходы воды в убывающем порядке (сумарный сток) p=m/(n+1)*100%
XII I II зима весна лето-осень
1 1963-64 74,56 40,88 73,95 189,39 883,25 1,08 0,08 0,00565 264,14 2043,52 814,36 5,9
2 1964-65 93,04 47,64 70,83 211,51 790,98 0,96 -0,04 0,00138 255,06 1646,21 741,34 11,8
3 1965-66 68,53 40,62 75,27 184,42 679,62 0,83 -0,17 0,02982 246,72 1575,96 693,86 17,6
4 1966-67 61,00 75,85 59,10 195,95 667,87 0,81 -0,19 0,03497 240,35 1535,03 689,64 23,5
5 1967-68 39,76 40,88 51,36 132,00 730,81 0,89 -0,11 0,01218 229,04 1456,13 673,52 29,4
6 1968-69 125,99 40,88 42,57 209,44 862,01 1,05 0,05 0,00243 228,15 1308,68 670,73 35,3
7 1969-70 83,02 65,79 91,54 240,35 869,70 1,06 0,06 0,00345 213,65 1277,64 652,57 41,2
8 1970-71 106,58 75,85 72,63 255,06 793,34 0,97 -0,03 0,00117 211,51 1212,54 629,35 47,1
9 1971-72 99,09 61,94 52,62 213,65 631,92 0,77 -0,23 0,05325 211,46 1207,80 598,81 52,9
10 1972-73 122,69 47,51 58,84 229,04 902,56 1,10 0,10 0,00974 209,63 1185,05 579,47 58,8
11 1973-74 82,97 49,59 78,90 211,46 1025,82 1,25 0,25 0,06187 209,44 1057,65 564,21 64,7
12 1974-75 102,30 68,10 76,32 246,72 917,45 1,12 0,12 0,01365 195,95 969,18 538,28 70,1
13 1975-76 77,21 70,42 80,52 228,15 792,36 0,96 -0,04 0,00126 189,39 785,60 537,44 76,5
14 1976-77 69,20 72,73 67,70 209,63 747,07 0,91 -0,09 0,00820 184,42 727,76 495,20 82,4
15 1977-78 48,28 49,04 56,55 153,87 843,51 1,03 0,03 0,00072 153,87 714,91 471,92 88,2
16 1978-63 140,06 77,36 46,72 264,14 1005,48 1,22 0,22 0,05017 132,00 679,69 418,27 94,1
сумма 13143,75 16,00 0,00 0,28992

Описание работы

В период половодья (паводка) часть излишков воды временно задерживается в водохранилище. При этом происходит некоторое повышение уровня воды сверх НПУ, за счет чего образуется форсированный объем и гидрограф половодья (паводка) трансформируется (распластывается) в гидрограф сбросных расходов. Образование форсированного объема, равного аккумулирующейся части стока высоких вод, позволяет снизить максимальные расходы воды, поступающие в нижний бьеф, и тем самым предотвратить наводнения на нижерасположенных участках реки, а также уменьшить размеры водосбросных гидротехнических сооружений.

2. Исходные данные……………………………………………………………………………….…4

3. Определение среднюю многолетнюю величину (норму) годового стока при наличии данных наблюдений…………………………………………………………………………..…….8

4. Определение коэффициент изменчивости (вариации) Сv годового стока………………………………………………………………………………….10

5. Определение норму стока при недостатке данных методом гидрологической аналогии………………………………………………………………………………12

6. Построить и проверить кривую обеспеченности годового стока…………………………………………………………………….……………14

7. Рассчитать внутригодовое распределение стока методом компоновки для целей орошения с расчетной вероятностью превышения Р=80%....................................................................................................................21

8. Определение расчетного максимального расхода, талых вод Р=1% при отсутствии данных гидрометрических наблюденийпо формуле……………….23

9. Построение батиграфических кривых водохранилища…………………………………………………………………………………24

10. Определение минимального уровня воды УМО……………………………………………………………………….……..26

11. Расчет водохранилища сезонно-годичного регулирования стока…………………………………………………………………………………28

12. Определение режима работы водохранилища балансовым таблично-цифровым расчетом………………………………………………………………..……………...30

13. Интегральные (календарные) кривые стока и отдачи………………………………………………………………………………….34

14. Расчет водохранилища многолетнего регулирования………………………………………………………………………………...36

15. Библиографический список………………………………………………………………………………

Так как систематический учет стока ведется не на всех реках, впадающих в озеро, и остальная часть бассейна остается неизученной, расчет разделен на две части.

а) Подсчет суммарного стока с территории освещенной наблюдениями.

Площадь бассейна озера 47800 км², средняя площадь зеркала Чудско-Псковского озера – 3550 км². В 1968 году наблюдение за стоком велись на реках:

Среднегодовой сток рек впадающих в озеро.

Табл.21

река – пост

М л/с км²

р.Роостоя – д.Роостоя

р.Кяэпа – д.Кяэпа

р.Суур-Эмайычи–г.Тарту

р.Выханду – р.п.Ряпина

Гдовка - Злоблина

р.Великая – д.Пятоново

р.Желча – пос.Ямма

Черма - Яктунина

Тагайыгы - Тудулинна

Q осв = 105,7 м³/с

б) Подсчет среднегодового стока с бассейна озера.

Суммарная площадь изученных рек:

где М1 …Mn – модули стока в пунктах где производятся наблюдения, л/с км²; F1 … Fn - площади водосборов в этих пунктах, км².

Таким образом, на основе всех произведенных вычислений:

Суммарный поверхностный приток озера определяется по формуле

2.3.2 Расчет испарения с поверхности озера

Расчет испарения с поверхности Чудско-Псковского озера за интервалы времени безледоставного периода 1968 года производится по данным опорных метеостанций Гдов, Псков и Тийрикоя, равномерно расположенных по периметру озера.

Данные о температуре воды и датах вскрытия и замерзания озера взяты по станциям Раскопель, Залита и Муствээ.

Расчет испарения начинается с определения средней длины разгона воздушного потока над озером. Для этого на план озера наносятся две системы прямоугольных сеток из параллельных профилей, ориентированных в первом случае с С на Ю и с З на В, а во втором – с СЗ на ЮВ и с СВ на ЮЗ. Среднюю длину разгона для каждого направления профиля Li вычисляем как среднее арифметическое из длин всех профилей этого направления:

L ср = 37 км

Затем рассчитываем розу ветров. Для этого по данным метеорологических ежемесячников за расчетный год по опорной метеостанции суммируем число случаев ветра всех восьми румбов, а потом определяем повторяемость направлений ветра в % как отношение числа случаев ветра соответствующего румба за год к годовой сумме числа случаев ветра всех восьми румбов, %.

Повторяемость направлений ветра, %

Табл.11

Тийрикоя

Струги Красные

Средняя длина разгона для всей акватории озера вычисляется по формуле:

где Lс-ю и т.д. – средняя длина разгона воздушного потока по профилям соответствующих направлений, км; (Nc+Nю) и т.д. – сумма повторяемостей направлений ветра для двух взаимно противоположных румбов, %.

Значения средних месячных скоростей ветра над озером на высоте 2 м определяется по формуле:

где K1 – коэффициент, учитывающий степень защищенности метеостанции на суше; K2 – коэффициент, учитывающий характер рельефа; K3 – коэффициент, учитывающий среднюю длину разгона воздушного потока над водоемом; U – скорость ветра на высоте флюгера за расчетный интервал времени.

Расчет средней скорости ветра над водоной поверхностью на высоте 2 м.

Метеостанция Гдов. Табл.12

Метеостанция Псков. Табл.13

Метеостанция Тийрикоя. Табл.14

Расчет средних месячных значений упругости водяного пара над озером на высоте 2 м.

Метеостанция Гдов Табл.15

Метеостанция Псков Табл.16

Метеостанция Тийрикоя Табл.17

Расчет испарения с поверхности озера за интервалы времени безледоставного периода.

Метеостанция Гдов Табл 18

Метеостанция Псков Табл.19

Метеостанция Тийрикоя Табл.20

Среднее рассчитанное значение для озера Е = 587 мм.

Тогда Wис = 2207·106 м³

ДЕПАРТАМЕНТ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ

Волгоградская государственная сельскохозяйственная академия

Кафедра: _____________________

Дисциплина: Гидрология

КОНТРОЛЬНАЯ РАБОТА

Выполнила: студент третьего курса,

заочного отделения, группы __ ЭМЗ, _____

________________________________

Волгоград 2006г.

ВАРИАНТ 0 Река Сура, с. Кадышево, площадь водосбора F=27 900 км 2 , залесенность 30%, болот нет, среднее многолетнее количество осадков 682 мм.

Среднемесячные и среднегодовые расходы воды и модули стока

Сентябрь

Ма л/с*км 2


Бассейн – аналог – р. Сура, г. Пенза.

Средняя многолетняя величина годового стока (норма) М оа =3,5 л/с*км 2 , С v = 0,27.

Таблица для определения параметров при подсчете максимального расхода талых вод

Река-пункт

Сура-Кадышево

1. Определить среднюю многолетнюю величину (норму) годового стока при наличии данных наблюдений.

Исходные данные: среднегодовые расходы воды, рассчитываемый период 10 лет (с 1964 – 1973 гг.).

где Q i – средний годовой стока за i-й год;

n – число лет наблюдений.

Q о= = 99,43 м 3 /с (величина среднего многолетнего стока).

Полученную норму в виде среднего многолетнего расхода воды требуется выразить через другие характеристики стока: модуль, слой, объем и коэффициент стока.

Модуль стока М о = = =3,56 л/с*км 2 , где F – площадь водосбора, км 2 .

Средний многолетний объем стока за год:

W o =Q o * T=99,43*31,54*10 6 =3 136,022 м 3 ,

где Т – число секунд в году, равное приблизительно 31,54*10 6 с.

Средний многолетний слой стока h o = = =112,4мм/год

Коэффициент стока α= = =0,165,

где х о – средняя многолетняя величина осадков в год, мм.

2. Определить коэффициент изменчивости (вариации) С v годового стока.

С v =, где – среднеквадратическое отклонение годовых расходов от нормы стока.

Если n<30, то = .

Если сток за отдельные годы выразить в виде модульных коэффициентов к= , то С v = , а при n<30 С v =

Составим таблицу для подсчета С v годового стока реки.

Таблица 1

Данные для подсчета С v

Годовые расходы м 3 /с



С v = = = = 0.2638783=0.264.

Относительная средняя квадратическая ошибка средней многолетней величины годового стока реки за период с 1964 по 1973 гг. (10 лет) равна:

Относительная средняя квадратическая ошибка коэффициента изменчивости С v при его определении методом моментов равна:

Длина ряда считается достаточной для определения Q o и C v , если 5-10%, а 10-15%. Величина среднего годового стока при этом условии называется нормой стока. В нашем случае находится в пределах допустимого, а больше допустимой ошибки. Значит, ряд наблюдений недостаточный необходимо удлинить его.

3. Определить норму стока при недостатке данных методом гидрологической аналогии.

Река-аналог выбирается по:

– сходству климатических характеристик;

– синхронности колебаний стока во времени;

– однородности рельефа, почвогрунтов, гидрогеологических условий, близкой степени покрытости водосбора лесами и болотами;

– соотношению площадей водосборов, которые не должны отличаться более чем в 10 раз;

– отсутствию факторов, искажающих сток (строительство плотин, изъятие и сброс воды).

Река-аналог должна иметь многолетний период гидрометрических наблюдений для точного определения нормы стока и не менее 6 лет параллельных наблюдений с изучаемой рекой.


Коэффициент изменчивости годового стока:

где С v – коэффициент изменчивости стока в расчетном створе;

C va – в створе реки-аналога;

М оа – среднемноголетняя величина годового стока реки-аналога;

А – тангенс угла наклона графика связи.

В нашем случае:

С v =1*3,5/3,8*0,27=0,25

Окончательно принимаем М о =3,8 л/с*км 2 , Q O =106,02 м 3 /с, С v =0,25.

4. Построить и проверить кривую обеспеченности годового стока.

В работе требуется построить кривую обеспеченности годового стока, воспользовавшись кривой трехпараметрического гамма-распределения. Для этого необходимо рассчитать три параметра: Q o – среднюю многолетнюю величину (норму) годового стока, C v и C s годового стока.

Используя результаты расчетов первой части работы для р. Сура, имеем Q O =106,02 м 3 /с, С v =0,25.

Для р. Сура принимаем C s =2С v =0,50 с последующей проверкой.

Ординаты кривой определяем в зависимости от коэффициента С v по таблицам, составленным С.Н. Крицким и М.Ф. Менкелем для C s =2С v . Для повышения точности кривой необходимо учитывать сотые доли С v и провести интерполяцию между соседними столбцами цифр.

Ординаты теоретической кривой обеспеченности среднегодовых расходов воды реки Сура с. Кадышево.

Таблица 2

Обеспеченность, Р%

Ординаты кривой


Построить кривую обеспеченности на клетчатке вероятностей и проверить ее данные фактических наблюдений.

Таблица 3

Данные для проверки теоретической кривой

Модульные коэффициенты по убыванию К

Фактическая обеспеченность

Годы, соответствующие К


Для этого модульные коэффициенты годовых расходов нужно расположить по убыванию и для каждого из них вычислить его фактическую обеспеченность по формуле Р = , где Р – обеспеченность члена ряда, расположенного в порядке убывания;

m – порядковый номер члена ряда;

n – число членов ряда.

Как видно из последнего графика, нанесенные точки осредняют теоретическую кривую, значит кривая построена правильно и соотношение C s =2 С v соответствует действительности.

Расчет делится на две части:

а) межсезонное распределение, имеющее наиболее важное значение;

б) внутрисезонное распределение (по месяцам и декадам), устанавливаемое с некоторой схематизацией.

Расчет выполняется по гидрологическим годам, т.е. по годам, начинающимся с многоводного сезона. Сроки сезонов начинаются едиными для всех лет наблюдений с округлением их до целого месяца. Продолжительность многоводного сезона назначается так, чтобы в границах сезона помещалось половодье как в годы с наиболее ранним сроком наступления, так и с наиболее поздним сроком окончания.

В задании продолжительность сезона можно принять следующий: весна-апрель, май, июнь; лето-осень – июль, август, сентябрь, октябрь, ноябрь; зима – декабрь и январь, февраль, март следующего года.

Величина стока за отдельные сезоны и периоды определяется суммой среднемесячных расходов. В последнем году к расходу за декабрь прибавляются расходы за 3 месяца (I, II, III) первого года.

Расчет внутригодового распределения стока методом компоновки (межсезонное распределение).

р. Сура за 1964 – 1973 гг.

∑ сток лето-осень

Среднее значение стока лето-осень

Расходы за сезон весна

∑ весенний сток












Таблица 4


Продолжение таблицы 4

Расчет внутригодового распределения стока методом компоновки (межсезонное распределение)

Расходы за лимитирующий сезон лето-осень

∑ зимний сток

∑ сток за маловодный межен. период зима+лето+осень

Среднее значение за межен. период суммы стока

Расходы в убыв. порядке

лето-осень







1 818,40

4 456,70




Q ло = = 263,83 м 3 /сек

C s =2C v =0,322

Q меж = = 445,67 м 3 /сек

C s =2C v =0,363

Q рас год = К р *12*Q о = 0,78*12*106,02=992,347 м 3 /сек

Q рас меж = К р *Q меж = 0,85*445,67=378,82 м 3 /сек

Q рас ло = К р *Q ло =0,87*263,83=229,53 м 3 /сек

Q рас вес = Q рас год - Q рас меж =992,347-378,82=613,53 м 3 /сек

Q рас зим = Q рас меж - Q рас ло =378,82-229,53=149,29 м 3 /сек

Определить расчетные расходы по формулам:

годового стока Q рас год = К, *12 Q о,

лимитирующего периода Q рас меж = К р, * Q ло,

лимитирующего сезона Q рас ло =К р, * Q рас год Q ло,

где К р, К р, К р, – ординаты кривых трехпараметрического гамма-распределения, снятые с таблицы соответственно для С v годового стока, С v меженного стока и С v для лета – осени.

Примечание: так как расчеты выполняются по среднемесячным расходам, расчетный расход за год требуется умножить на 12.

Одним из основных условий метода компоновки является равенство Q рас год = ∑ Q рас сез. Однако это равенство нарушается, если расчетный сток за нелимитирующее сезоны определять также по кривым обеспеченности (ввиду различия параметров кривых). Поэтому расчетный сток за нелимитирующий период (в задании – за весну) определить по разности Q рас вес = Q рас год - Q рас меж, а за нелимитирующий сезон (в задании зима)

Q рас зим = Q рас меж - Q рас ло.

Внутрисезонное распределение – приимается осредненным по каждой из трех групп водности (многоводная группа, включающая годы с обеспеченностью стока за сезон Р <33%, средняя по водности 33<Р<66%, маловодная Р>66%).

Для выделения лет, входящих в отдельные группы водности, необходимо суммарные расходы за сезон расположить по убыванию и подсчитать их фактическую обеспеченность (пример – табл. 4). Так как расчетная обеспеченность (Р=80%) соответствует маловодной группе, дальнейший расчет можно производить для лет, входящих в маловодную группу (табл. 5).

Для этого в графу «Суммарный сток» выписать расходы по сезонам, соответствующие обеспеченностям Р>66%, а в графу «Годы» – записать годы, соответствующие этим расходам.

Среднемесячные расходы внутри сезона расположить в убывающем порядке с указанием календарных месяцев, к которым они относятся (табл. 5). Таким образом, первым окажется расход за наиболее многоводный месяц, последним – за маловодный месяц.

Для всех лет произвести суммирование расходов отдельно за сезон и за каждый месяц. Принимая сумму расходов за сезон за 100%, определить процент каждого месяца А%, входящего в сезон, а в графу «Месяц» записать наименование того месяца, который повторяется наиболее часто. Если повторений нет, вписать любой из встречающихся, но так, чтобы каждый месяц, входящий в сезон, имел свой процент от сезона.

Затем, умножая расчетный расход за сезон, определенный в части межсезонного распределения стока (табл. 4), на процентную долю каждого месяца А% (табл.5), вычислить расчетный расход каждого месяца.

Q рас IV = = 613,53*9,09/100%=55,77 м 3 /с.

По данным табл. 5 графы «Расчетные расходы по месяцам» на миллиметровке построить расчетный гидрограф Р-80% изучаемой реки (рис 3).

6. Определить расчетный максимальный расход, талых вод Р=1% при отсутствии данных гидрометрических наблюдений по формуле:

Q p =M p F= , м 3 /с,

где Q p – расчетный мгновенный максимальный расход талых вод заданной обеспеченности Р, м 3 /с;

M p – модуль максимального расчетного расхода заданной обеспеченности Р, м 3 /с*км 2 ;

h p – расчетный слой половодья, см;

F – площадь водосбора, км 2 ;

n– показатель степени редукции зависимости =f(F);

k o – параметр дружности половодья;

и – коэффициенты, учитывающие снижение максимальных расходов рек, зарегулированных озерами (водохранилищами) и в залесенных и заболоченных бассейнах;

– коэффициент, учитывающий неравенство статистических параметров слоя стока и максимальных расходов при Р=1%; =1;

F 1 – дополнительная площадь водосбора, учитывающая снижение редукции, км 2 , принимаемая по приложению 3.

ГИДРОГРАФ

Таблица 5

Вычисление внутрисезонного распределения стока

Суммарный сток

Среднемесячные расходы по убыванию

1. За весенний сезон













Всего:









2. За летне-осенний сезон

Всего:

3. За зимний сезон







Всего:



Расчетные расходы по месяцам




Расчетные объемы (млн. м 3) по месяцам

















Примечание: Чтобы получить объемы стока в млн. куб., следует расходы умножить: а) для 31-дневного месяца на коэффициент 2,68, б) для 30-дневного месяца -2,59. в) для 28-дневного месяца -2,42.

Параметр k o определяется по данным рек-аналогов, в контрольной работе k o выписывается из приложения 3. Параметр n 1 зависит от природной зоны, определяется из приложения 3.

где K p – ордината аналитической кривой трехпараметрического гамма – распределения заданной вероятности превышения, определяется по приложению 2 в зависимости от C v (приложение 3) при C s =2 C v с точностью до сотых интерполяций между соседними столбцами;

h – средний слой половодья, устанавливается по рекам – аналогам или интерполяцией, в контрольной работе – по приложению 3.

Коэффициент, учитывающий снижение максимального стока рек, зарегулированных проточными озерами, следует определять по формуле:

где С – коэффициент, принимаемый в зависимости от величины среднего многолетнего слоя весеннего стока h;

fоз – средневзвешенная озерность.

Так как в расчетных водосборах нет проточных озер, а расположенная вне главного русла fоз<2%, принимаем =1. Коэффициент, учитывающий снижение максимальных расходов воды в залесенных водосборах, определяется по формуле:

= /(f л +1) n 2 =0,654,

где n 2 – коэффициент редукции принимается по приложению 3. Коэффициент зависит от природной зоны, расположения леса на водосборе и общей залесенности f л в %; выписывается по приложению 3.

Коэффициент, учитывающий снижение максимального расхода воды заболоченных бассейнов, определяется по формуле:

1- Lg(0,1f +1),

где – коэффициент, зависящий от типа болот, определяется по приложению 3;

f – относительная площадь болот и заболоченных лесов и лугов в бассейне, %.

По приложению 3 определяем F 1 =2 км 2 , h=80 мм, C v =0,40, n=0,25, =1, К о = 0,02;

по приложению 2 К р =2,16;

h p =k p h=2,16*80=172,8 мм, =1;

= /(f л +1) n 2 =1,30(30+1) 0,2 =0,654;

1- Lg(0,1f +1)=1-0,8Lg*(0,1*0+1)=1.

Среднегодовые слои осадков в теплый и холодный периоды года /гд и Их принимаются для данного пункта по рекомендациям метеостанций или по климатическим справочникам.[ ...]

Среднегодовая величина речного стока составляет в настоящее время 4 740 км3. Общий объем воды в озерах 106,4 тыс. км3, в том числе в Арале и Каспии - 79,2 тыс. км3. Запас воды в пресных озерах составляет 25,2 тыс. км3, из них 91% приходится на Байкал.[ ...]

4.10

Примечание, р - среднегодовая величина осадков в мм: Р - коэффициент, равный единице минус коэффициент стока; е - годовой расход влаги (суммарный) в мм.[ ...]

Расчет годового стока Cs в реку Тобол при допущении, что его замеренная концентрация в устье Туры близка к среднегодовой, дает величину 3,4-1010 Бк/год (0,93 Ки/год).[ ...]

Яна является четвертой по величине рекой в Якутии, имеющей выход на шельф Ледовитого океана. Имеет самый большой уклон по сравнению с другими реками Якутии (15 см на 1 км), среднегодовой сток ее равен 32 км3. Образуется при слиянии Дулгалаха и Сартанга, длина реки 906 км. Русло расположено в гористой местности Восточного Верхоянья. Яна имеет 89 притоков, крупнейшие: Адыча, Бытантай, Ольде. Впадает в мелководный Янский залив, являющийся юго-восточной частью моря Лаптевых.[ ...]

Вторая причина, по которой подземный сток остается плохо изученным компонентом водного и солевого баланса морей и океанов носит субъективный характер. Многие годы и даже десятилетия гидрологи, занимающиеся изучением водного баланса исходили из того, что подземный сток является небольшим по величине элементом водного баланса (по сравнению с другими его компонентами) и поэтому его можно определить, используя уравнение среднемноголетнего водного баланса. Иными словами, по их мнению, подземный сток может быть определен как разность между среднегодовыми величинами атмосферных осадков, испарением и речным стоком. Рассчитанная таким образом величина подземного стока полностью зависит от точности оценки средних величин осадков, испарения и речного стока и включает в себя все погрешности их определения, которые в сумме часто превышают значение подземного стока непосредственно в моря.[ ...]

Универсальными гидрохимическими параметрами являются среднегодовые и многолетние величины содержания отдельных элементов и их соединений и среднегодовой сток химических веществ. Они относительно постоянны для определенных промежутков времени и позволяют сравнивать гидрохимические показатели разных лет с учетом короткопериодических природных изменений химических веществ. Они относительно постоянны для определенных промежутков времени и позволяют сравнивать гидрохимические показатели разных лет с учетом короткопериодических природных изменений химического состава воды.[ ...]

Приращения УКМ определяются в основном разностью двух больших величин: речного стока и видимого испарения (разность осадки-испарение) с поверхности моря. Об определяющей роли речного стока для межгодовых вариаций УКМ свидетельствует высокий коэффициент корреляции между этими величинами, составляющий 0,82 за период 1900-1992 гг. Корреляция между видимым испарением и УКМ за тот же период также статистически значима и равна -0,46. Необходимо отметить антропогенное влияние на речной сток, как на его среднегодовое значение, так и на годовой ход. В частности, с конца 40-х по середину 60-х годов происходило наполнение водохранилищ в бассейне Волги общим объемом около 200 км?. В данной работе используются многолетние данные для стока Волги и осадков над водосбором Волги со среднемесячным разрешением, полученные по данным наблюдений. Сток Волги составляет 82% от общего речного стока, и коэффициент корреляции между среднегодовыми рядами этих величин составляет 0,96 (1900-1992 гг.).[ ...]

Изменения уровенного режима в водоемах, вызванные реконструкцией стока на всех участках речной системы, низкие и поздние паводки, колебания уровня воды во время размножения рыб с весеннелетними сроками размножения приводит к приостановке нереста, резорбции половых клеток, выметыванию меньшего количества икры, а иногда и массовой гибели развивающейся икры, личинок, молоди рыб и производителей на нерестилищах. Это иногда подрывает запасы рыб в водоеме и отрицательно сказывается на величине и ценности промысловых уловов. Совершенно естественно, что в водоемах наряду с выработкой видоспецифичной температурной зоны адаптации, при которой начинается нерест, происходило приспособление рыб к определенному (среднегодовому, среднемноголетнему) уровенному режиму водоема, - такому, когда внешними водами быстро заливались обширные ильменно-полойные участки рек и озер с прошлогодней луговой растительностью, служившей хорошим субстратом для развития выметанной икры. Паводок, как правило, должен быть длительным с медленным снижением уровня, что дает возможность выклюнувшейся молоди полностью использовать кормовые ресурсы мелководной, заливаемой полыми водами зоны, обеспечивая ее быстрый рост и своевременный скат молоди с нерестилищ.[ ...]

Отрицательные значения балансов соответствуют превышению выходного стока радионуклидов над входным в результате естественного дренажа из обширной пойменной системы. Соответствующая величина, равная разнице между входным и выходным годовыми стоками будет вынесена в течение года из рассматриваемых участков пойм рек, в частности, 847 ГБк 908г и 94 ГБк 137С8 из поймы Оби между границей с Томской областью и Ханты-Мансийском, и 1145 ГБк 908г из поймы Иртыша между н.п. Демьянским и Ханты-Мансийском. Положительные значения балансов на исследованных участках рек связаны с превышением входного стока данного радионуклида над выходным стоком. Величина, равная разности стоков, будет депонирована на соответствующем участке поймы, в частности, 92 ГБк 137Сз на иртышском участке. Естественно, что все приведенные выше оценки остаются справедливыми при условии сохранения рассматриваемой среднегодовой динамики стоков. Более точные и объективные оценки могут быть получены на основании более детальных радиоэкологических исследований.[ ...]

Сравнивая гидрологические характеристики р. Томи в створе Крапивине кого гидроузла и р. Оби в створе Новосибирского можно видеть, что сток р. Томи (29,6 км3) почти вдвое меньше, чем р. Обь (50,2 км3). Полезный объем Кра-пивинского в 2, а полный в 1,3 раза больше Новосибирского. Приращения площадей водосборов водохранилищ 16 тыс. км2 и 13 тыс. км2 близки между собой. В различные по водности годы соотношение полезного объема Новосибирского водохранилища и годового стока р. Оби изменяется от 12 до 6 % при колебаниях стока от 36,7 до 73,2 км3. Для Крапивинского водохранилища соотношения этих величин значительно выше. Полный объем составляет 39,5 %, а полезный - 32,8 % от среднегодового стока реки в створе гидроузла и 55,1 и 45,8 % от объема стока в год 95%-ной обеспеченности по водности.[ ...]

Естественные ресурсы пресных подземных вод основных водоносных горизонтов каменноугольных отложений, характеризующие среднемноголетнюю величину их восполнения, составляют около 100 м3/с при среднегодовом модуле подземного стока примерно 2 л/с км2. Учтенный водоотбор подземных вод в среднем составляет примерно 50 м3/с.[ ...]

Многолетние наблюдения велись лишь на одном из водосборов, поэтому проверку построенной регрессионной модели на других водосборах автору не удалось провести. Зато очень интересны результаты моделирования сезонных изменений стока нитратов, данные по которым имелись для всех трех водосборов и были подвергнуты регрессионному анализу. На величину среднемесячной концентрации в стоке нитрат-ионов в построенных эмпирических моделях влияли параметры, связанные с «предысторией» водосбора: суммарное количество осадков, выпавших на его территории за изучаемый период и за три предыдущих месяца, суммарный объем стока нитратов за восемь месяцев (текущий плюс семь предшествующих), среднемесячная температура за три месяца (причем не в самой простой комбинации, а от 5-го до 3-го, считая исследуемый месяц за нулевой), суммарный месячный слой стока, коэффициент стока. Но для каждого из исследованных водосборов, которые значительно различались не только размерами, но и среднегодовой нормой осадков, приходилось строить свои регрессионные уравнения. И самое главное: в полученных уравнениях зависимость от одних и тех же параметров оказывалась то логарифмической, то гиперболической, то квадратичной, то линейной.[ ...]

Под естественными ресурсами подземных вод понимается обеспеченный питанием расход подземных вод, т.е. та их часть, которая непрерывно возобновляется в процессе общего круговорота воды на Земле. Естественные ресурсы характеризуют величину питания подземных вод за счет инфильтрации атмосферных осадков, поглощения речного стока и перетекания из других водоносных горизонтов, суммарно в раженную величиной расхода потока. Естественные ресурсы подземных вод являются, таким образом, показателем восполнения подземных вод, отражающим их основную особенность как возобновляемого полезного ископаемого, и характеризуют верхний предел возможного отбора подземных вод за многолетний период без их истощения. В среднемноголетнем значении величина питания подземных вод за вычетом испарения равна величине подземного стока. Поэтому в практике гидрогеологических исследований естественные ресурсы подземных вод обычно выражаются среднегодовыми или минимальными значениями модулей подземного стока (л/с км2) или величиной слоя воды (мм/год), поступающей в водоносный горизонт в области его питания.

Расход воды - это объем воды, протекающий через поперечное сечение реки в единицу времени. Обычно расход воды измеряется в кубических метрах в секунду (м3/с). Средний многолетний расход воды самых больших рек республики, например Иртыша, составляет 960 мі/с, а Сырдарьи - 730 мі/сек.

Расход воды в реках за год называют годовым стоком. Например, годовой сток Иртыша - 28000 млн. мі. Сток воды определяет ресурсы поверхностных вод. Сток распространен по территории Казахстана неравномерно, объем поверхностного стока - 59 кмі. Величина годового стока рек зависит, прежде всего, от климата. В равнинных районах Казахстана годовой сток в основном зависит от характера распределения снежного покрова и запасов воды перед таянием снега. Дождевая вода почти полностью уходит на увлажнение верхнего слоя почвы и испарение.

Основным фактором, влияющим на течение горных рек, является рельеф. По мере увеличения абсолютной высоты количество годовых атмосферных осадков возрастает. Коэффициент увлажнения на севере Казахстана составляет около единицы, и годовой сток высокий, и больше воды в реке. Величина стока на квадратный километр на территории Казахстана составляет в среднем 20000 мі. Наша республика по величине стока рек опережает только Туркмению. Сток рек изменяется по сезонам года. Равнинные реки в зимние месяцы дают 1% годового стока.

Для регулирования речных стоков строят водохранилища. Водные ресурсы одинаково используются и зимой, и летом для нужд в народного хозяйства. В нашей стране имеется 168 водохранилищ, самые крупные из них - Бухтарминское и Капчагайское.

Весь переносимый рекой твердый материал называют твердым стоком. От его объема зависит мутность воды. Ее измеряют в граммах вещества, содержащегося в 1 мі воды. Мутность равнинных рек составляет 100 г/мі, а в среднем и нижнем течениях - 200 г/мі. Реки Западного Казахстана выносят большое количество рыхлых пород, мутность достигает 500-700 г/мі. Мутность горных рек увеличивается вниз по течению. Мутность в реке 650 г/мі, в нижнем течении Чу - 900 г/мі, в Сырдарье 1200 г/мі.

Питание и режим рек

Казахстанские реки имеют различное питание: снеговое, дождевое, ледниковое и подземными водами. Рек с одинаковым питанием не существует. Реки равнинной части республики по характеру питания делятся на два типа: снегово-дождевого и преимущественно снегового питания.

К рекам снегово-дождевого питания относятся реки, расположенные в лесостепной и степной зонах. Главные этого типа - Ишим и Тобол - весной выходят из берегов, на апрель-июль приходится 50% годового стока. Реки сначала питаются талыми водами, потом дождевыми. С низкий уровень воды наблюдается в январе, в это время питаются подземными водами.

Реки второго типа имеют исключительно весенний сток (85-95% годового стока). К этому типу питания относятся реки, расположенные в пустынной и полупустынной зонах, - это Нура, Урал, Сагыз, Тургай и Сарысу. Подъем воды в этих реках наблюдается первой половине весны. Основной источник питания это снег. Уровень воды весной резко поднимается во время таяния снегов. В странах СНГ такой режим рек называют казахстанским типом. Например, по реке Нура за короткое время весной протекает 98% ее годового стока. Самый низкий уровень воды бывает летом. Некоторые реки совсем пересыхают. После осенних дождей уровень воды в pеке немного повышается, а зимой снова понижается.

В высокогорных районах Казахстана реки имеют смешанный тип питания, но преобладает снегово-ледниковый. Это реки Сырдарья, Или, Каратал и Иртыш. Уровень в них поднимается в конце весны. Реки Алтайских гор весной выходят из своих берегов. Но уровень воды в них остается высоким до середины лета, в связи с неодновременным таянием снега.

Реки Тянь-Шаня, Жунгарского Алатау полноводны в теплое время года, т.е. весной и летом. Это объясняется тем, что в этих горах таяние снегов растягивается до осени. Весной таяние снега начинается с нижнего пояса, затем в течение лета тают снега средней высоты и ледники высокогорья. В стоке горных рек доля дождевых вод незначительна (5-15%), а в низкогорьях она повышается до 20-30%.

Равнинные реки Казахстана из-за маловодности и медленного течения с наступлением зимы быстро замерзают и в конце ноября покрываются ледовым покровом. Толщина льда доходит до 70-90 см. В морозную зиму толщина льда на севере республики достигает 190 см, а в южных реках 110 см. Ледовый покров рек сохраняется в течение 24 месяцев, начинает таять на юге в начале апреля, а на севере - во второй половине апреля.

Ледниковый режим высокогорных рек другой. В горных реках в связи с сильным течением и питанием грунтовыми водами не бывает устойчивого ледового покрова. Лишь в отдельных местах наблюдаются береговые льды.Казахстанские реки постепенно размывают горные породы. Реки текут, углубляя свое дно, разрушая свои берега, перекатывая мелкие и крупные камни. В равнинных частях Казахстана течение рек медленное, и оно переносит твердого материалов.