ОПРЕДЕЛЕНИЕ

Колебательное движение – это движение, точно или приблизительно повторяющееся через одинаковые промежутки времени, при котором тело многократно и в разных направлениях проходит положение .

Колебательное движение наряду с поступательным и вращательным является одним из видов .

Физическая система (или тело), в которой при отклонении от положения равновесия возникают колебания, называется колебательной системой. На рис.1 представлены примеры колебательных систем: а) нить + шарик + Земля; б) груз + пружина; в) натянутая струна.

Рис.1. Примеры колебательных систем: а) нить + шарик + Земля; б) груз + пружина; в) натянутая струна

Если в колебательной системе отсутствуют потери , связанные с действием , то колебания будут продолжаться бесконечно долго. Такие колебательные системы называются идеальными. В реальных колебательных системах всегда существуют потери энергии, обусловленные силами сопротивления, в результате чего колебания не могут продолжаться бесконечно долго, т.е. являются затухающими.

Свободные колебания – это колебания, возникающие в системе под действием внутренних сил. – колебания, возникающие в системе под действием внешней периодической .

Условия возникновения свободных колебаний в системе

  • система должна находиться в положении устойчивого : при отклонении системы от положения равновесия должна возникать сила, стремящаяся вернуть систему в положение равновесия — возвращающая ;
  • наличие у системы избыточной механической энергии по сравнению с ее энергией в положении равновесия;
  • избыточная , полученная системой при смещении ее из положения равновесия, не должна быть полностью израсходована на преодоления сил трения при возвращении в положение равновесия, т.е. в системе должны быть достаточно малы.

Примеры решения задач

ПРИМЕР 1

Задание Какие из приведенных движений являются примером механических колебаний:
а) движение крыльев стрекозы;
б) движение парашютиста, опускающегося на землю;
в) движение Земли вокруг Солнца;
г) движение травы на ветру;
д) движение шарика на дне сферической чаши;
ж) движение качелей? В каких случаях колебания являются вынужденными и почему?
Ответ Примером являются следующие случаи: а) движение крыльев стрекозы; г) движение травы на ветру; д) движение шарика на дне сферической чаши; ж) движение качелей. Во всех этих случаях тела совершают движения, повторяющиеся во времени, проходя одни и те же положения в прямом и в обратном порядке. Земля, оборачиваясь вокруг Солнца, совершает повторяющееся движение, однако она не меняет направление своего движения, поэтому случай в) движение Земли вокруг Солнца; не является примером механических колебаний.

Вынужденными колебаниями являются случаи а) движение крыльев стрекозы; и г) движение травы на ветру. В обоих случаях колебания совершаются под действием внешней силы (в первом случае – силы мышц стрекозы, во втором случае – силы ветра). В случае ж) движение качелей колебания будут вынужденными, если время от времени раскачивать качели. Если же вывести качели из положения равновесия и отпустить, колебания будут свободными.

ПРИМЕР 2

Задание Колебания каких из приведенных ниже тел будут свободными:
а) поршень в цилиндре двигателя;
б) игла швейной машины; в) ветка дерева после того, как с нее слетела птица;
г) струна музыкального инструмента;
д) конец стрелки компаса;
е) мембрана телефона при разговоре;
ж) чаши рычажных весов?
Ответ Колебания будут свободными в случаях: в) ветка дерева после того, как с нее слетела птица; г) струна музыкального инструмента; д) конец стрелки компаса и ж) чаши рычажных весов. Во всех этих случаях внешнее усилие только выводит систему из положения равновесия, колебания же в системе совершаются под действием внутренних сил. В случаях в), и г) это силы упругости, в случае д) – сила со стороны магнитного поля Земли в случае ж) – это

Колебаниями называются процессы, характеризуемые определённой повторяемостью со временем. Можно без преувеличения сказать, что мы живём в мире колебаний и волн. Действительно, живой организм существует благодаря периодическому биению сердца, наши лёгкие колеблются при дыхании. Человек слышит и разговаривает вследствие колебаний его барабанных перепонок и голосовых связок. Световые волны (колебания электрических и магнитных полей) позволяют нам видеть. Другими важными примерами являются переменный ток, электромагнитные колебания в колебательном контуре, радиоволны и т.д. Как видно из приведённых примеров, природа колебаний различна. Однако они сводятся к двум типам механическим и электромагнитным колебаниям. Оказалось, что, несмотря на различие физической природы колебаний, они описываются одинаковыми математическими уравнениями.

Любая система, способная колебаться или в которой могут происходить колебания , называется колебательной . Колебания, происходящие в колебательной системе, выведенной из состояния равновесия и представленной самой себе, называют свободными колебаниями . Свободные колебания являются затухающими, так как энергия, сообщённая колебательной системе, постоянно убывает. Рассмотрим сначала колебания, полностью пренебрегая причинами, приводящими к убыванию энергии.

Гармоническими называют колебания, при которых какая-либо физическая величина, описывающая процесс, изменяется со временем по закону косинуса или синуса:

(t) = Acos( 0 t +) (1)

Выясним физический смысл постоянных A , w и a, входящих в это уравнение.

Константа A называется амплитудой колебания.

Амплитуда это наибольшее значение, которое может принимать колеблющаяся величина. Согласно определению, она всегда положительна.

Выражение wt + a, стоящее под знаком косинуса, называют фазой колебания . Она позволяет рассчитать значение колеблющейся величины s в любой момент времени. Постоянная величина a представляет собой значение фазы в момент времени t = 0 и поэтому называется начальной фазой колебания . Значение начальной фазы зависит от выбора начала отсчёта времени. Величина w получила название циклической частоты, физический смысл которой связан с понятиями периода и частоты колебаний.

Периодом незатухающих колебаний называется наименьший промежуток времени, по истечении которого процессы повторяются, или коротко время одного полного колебания. Число колебаний, совершаемых в единицу времени, называют частотой колебаний . Частота n связана с периодом T колебаний соотношением

Частота колебаний измеряется в герцах (Гц). Циклическая частота связана с периодом и частотой колебаний соотношением:

Из этого соотношения следует физический смысл циклической частоты. Она показывает, сколько колебаний совершается за 2p секунд.

Пружинный маятник представляет собой тело массой, подвешенное на пружине. Массой пружины и силами трения пренебрегаем.

Рассмотрим превращения энергии, происходящие при колебании такого маятника. Уравнение колебаний пружинного маятника имеет вид:

x(t) = Xmcos(w_t + a) (4)

где X m и w0 амплитуда колебания и циклическая частота колебания (см. (1)). Это выражение получается из (1) заменой x на x ------и A на X m, учитывая, что

Здесь k коэффициент жёсткости пружины, т -- масса тела. Полная механическая энергия W пружинного маятника представляет собой сумму кинетической энергии W k тела и потенциальной энергии W p деформированной пружины, т.е.

W = Wk + Wp (5)

Потенциальная энергия деформированной пружины находится по формуле

W p = kx 2 / 2

где x величина удлинения пружины, равная отклонению тела от положения равновесия. С учётом (4) получаем:

так как Кинетическая энергия тела равна W k = (1/2)m 2. Согласно определению скорость тела при движении вдоль координатной оси x равна

Тогда скорость тела, совершающего гармонические колебания по закону (4), находим по формуле:

Подставляя (6) и (7) в (5), находим

поскольку sin2(w0t + a) + cos2(w0t + a) = 1. Таким образом, как следует из (8), полная механическая энергия при свободных гармонических колебаниях не зависит от времени, т.е. остается величиной постоянной. Из соотношений же (6) и (7) вытекает, что потенциальная и кинетическая энергии изменяются со временем пропорционально cos2(w0t + a) и sin2(w0t + a) соответственно. Поэтому, когда одна из них увеличивается, другая уменьшается. Следовательно, в процессе механических колебаний происходит периодический переход потенциальной энергии в кинетическую энергию и обратно. Важно отметить, что энергия колебаний пропорциональна квадрату амплитуды колебаний (см. (8)).

Колебательным контуром называют электрическую цепь, состоящую из индуктивности и ёмкости. Электрическим сопротивлением контура пренебрегаем.

Рассмотрим теперь электромагнитные колебания в колебательном контуре. Уравнение колебаний заряда q на конденсаторе записывается в виде:

q = qmcos(w0t + a) (9)

где q m амплитуда колебания заряда, ?0 циклическая частота колебаний (см. (1)).

Циклическая частота находится по формуле

где L индуктивность катушки, С -- ёмкость конденсатора.

Энергия W колебательного контура складывается из энергии W E электрического поля конденсатора и энергии W B магнитного поля индуктивности, т.е.

W = WE + WB (10)

W E = q 2/(2C )

где q величина заряда на конденсаторе, C ёмкость конденсатора. Учитывая (9), получаем, что:

Энергия магнитного поля находится по формуле

W B = Li 2/2

Здесь i сила тока, проходящего через проводник. Сила тока i в контуре находится дифференцированием соотношения (9) по времени:

Поскольку

Подставляя (11) и (12) в (10), находим

Из соотношений же (11) и (12) следует, что энергии электрического и магнитного полей изменяются со временем пропорционально cos2(?0t + ?) и sin2(?0t + ?) соответственно. Поэтому, когда одна из них увеличивается, другая уменьшается. Следовательно, в процессе колебаний происходит периодический переход энергии электрического поля в энергию магнитного и обратно, т.е. происходят электромагнитные колебания. Важно отметить, что энергия колебаний также пропорциональна квадрату амплитуды.

Затухающие колебания. До сих пор были рассмотрены идеализированные незатухающие колебания, которые возникали в колебательной системе, когда не происходит потери энергии. Однако такие потери всегда есть вследствие наличия сил трения и нагревания проводников в колебательном контуре. Рассмотрим теперь реальные колебательные системы, в которых наблюдается убывание энергии, сообщённой ей. Уравнение колебаний в этом случае записывается в виде:

где введено обозначение

Здесь w представляет собой циклическую частоту затухающих колебаний, а w0 собственную циклическую частоту, в отсутствии потерь энергии при колебаниях. График зависимости (14) показан на рис. 1).

незатухающий колебание маятник декремент

Из графика видно, что величина? периодически достигает максимума и минимума. В этом смысле процессы, описываемые уравнением (14), можно считать колебательными. Их называют затухающими колебаниями . Наименьший промежуток времени T , через который повторяются максимумы (или минимумы) называют периодом затухающих колебаний . Выражение

стоящее перед периодической функцией cos(t +) в формуле (14), рассматривают как амплитуду затухающих колебаний. Она экспоненциально убывает со временем (см. пунктирную кривую на рис. 1). Величина A 0 представляет собой амплитуду колебания в момент времени t = 0, т.е. это начальная амплитуда затухающих колебаний. Величина, от которой зависит убывание амплитуды, называется коэффициентом затухания . Чем больше коэффициент затухания, тем колебания быстрее прекращаются.

Рассмотрим характеристики затухающих колебаний. Из выражения (15) теоретически следует, что амплитуда затухающих колебаний становится равной нулю при t . В связи с этим трудно охарактеризовать быстроту затухания. Поэтому вводят промежуток времени t, в течение которого амплитуда затухающих колебаний уменьшается в e раз (e 2,718 основание натуральных логарифмов), т.е. A (t )/A (t + ?) = e . Подставляя (15) в это выражение, получаем:

Отсюда bt = 1 и b = 1/t , т.е. коэффициент затухания обратно пропорционален времени, за которое амплитуда затухающих колебаний уменьшается в e раз.

Наряду с коэффициентом затухания используется также понятие логарифмического декремента затухания.

Логарифмическим декрементом затухания называют натуральный логарифм от отношения амплитуд затухающих колебаний, соответствующих моментам времени, отличающимся на период колебания, т.е.

Выясним его физический смысл. Используя выражение (15), из (16), находим:

  • b = 1/t
  • t = N еT

где N e число колебаний за время t.

d = T/ = T/(NeT) = 1/Ne

т.е. логарифмический декремент затухания обратно пропорционален числу колебаний, по истечении которых амплитуда затухающих колебаний уменьшается в e раз.

Вынужденные колебания. Явление резонанса. Вынужденными называют колебания, происходящие под действием периодически изменяющегося воздействия, а сами воздействия называются вынуждающими . Вынужденные колебания происходят с частотой, равной частоте вынуждающих воздействий. В качестве примера рассмотрим вынужденные колебания пружинного маятника. В этом случае на тело, кроме силы упругости и трения, действует вынуждающая сила F , изменяющаяся со временем по закону

F = Fm cos Щt ,

где Fm и Щ -- амплитуда и циклическая частота колебания. Пусть циклическая частота вынуждающей силы меньше собственной частоты

В этом случае маятник совершает гармонические колебания с некоторой амплитудой АВ. Затем начинаем плавно увеличивать частоту вынуждающей силы. При этом амплитуда вынужденных колебаний возрастает. При Щ амплитуда становится максимальной и при дальнейшем увеличении частоты амплитуда вынужденных колебаний снова уменьшается (рис. 3). Аналогичная зависимость амплитуды вынужденных колебаний от частоты наблюдается при электромагнитных колебаниях, происходящих в колебательном контуре. Явление резкого возрастания амплитуды вынужденных колебаний, когда частота вынуждающих воздействий примерно равна собственной частоте колебательной системы , называется резонансом .

Явление резонанса широко используется в технике. Оно может быть как полезным, так и вредным. Так, например, явление электрического резонанса играет полезную роль при настройке радиоприёмника на нужную радиостанцию. Изменяя величины индуктивности и ёмкости, можно добиться того, что собственная частота колебательного контура совпадёт с частотой электромагнитных волн, излучаемых какой-либо радиостанцией. В результате этого в контуре возникнут резонансные колебания данной частоты, амплитуды же колебаний, создаваемых другими станциями, будут малы. Это приводит к настройке радиоприёмника на нужную станцию.

С возможностью резонанса приходится считаться при сооружении мостов, производственных зданий, дымовых труб, высотных зданий и т.д. С целью ограничения разрушающего действия резонанса в производственных зданиях под агрегаты (источники вибрации) устанавливаются виброизоляторы. При расчёте высоких и гибких сооружений (дымовые трубы, висячие мосты и т.п.) на ветровую нагрузку предусматривают мероприятия по устройству обтекателей, виброгасителей. Для ограничения передачи колебаний от источника вибраций сооружениям через грунт, в грунте копают глубокие траншеи и наполняют их керамзитом, хорошо поглощающим энергию колебаний.

Волны. Представление о волнах пронизывает нашу жизнь и всю современную технику: волны на море и сейсмические волны в земле, звуковые волны, электромагнитные волны (радиоволны, свет, рентгеновское излучение) и т.д.

Волна это процесс распространения колебаний (возмущения) в пространстве . Геометрическое место точек, до которых дошли колебания, называют фронтом волны . Фронт волны представляет собой поверхность, отделяющую область пространства, в которой происходят колебания, от области, где их ещё нет. Все точки фронта волны колеблются в одинаковых фазах, поскольку колебания в них

начинаются одновременно. Форма фронта волны может быть различной. Простейшими являются сферические и плоские волны, фронт которых соответственно сфера и плоскость Линии, вдоль которых происходит распространение волны , называются лучами . В однородных изотропных средах лучи перпендикулярны к фронту волны. Независимо от фронта волны различают волны продольные и поперечные. В продольной волне колебания происходят вдоль направления распространения; в поперечной перпендикулярно к направлению распространения. Волны, во всех точках которых совершаются гармонические колебания одинаковой частоты, называются монохроматическими волнами .

1. Колебания.

2. Механические колебания.

3. Превращения энергии при механических колебаниях.

4. Период колебаний.

5. Частота колебаний.

6. Циклическая частота колебаний.

7. Амплитуда механических колебаний.

8. Гармонические колебания.

9. Фаза гармонического колебания.

10. Аналитическое представление колебаний.

11. Графическое представление колебаний.

12. Скорость точки в гармоническом колебании.

13. Ускорение точки в гармоническом колебании.

14. Динамика гармонического колебания.

15. Период колебаний пружинного маятника.

16. Математический маятник. Квазиупругая сила.

17. Колебания тела, плавающего на поверхности жидкости.

18. Колебания однородной жидкости в U – образной трубке.

19. Колебания тела в сферической чаше.

20. Энергия гармонического колебания.

21. Затухающие колебания.

22. Вынужденные колебания.

23. Резонанс.

24. Свободные колебания. Собственная частота.

25. Автоколебания.

1. Колебания. Колебаниями вообще называют периодические изменения состояния системы, при которых периодически изменяются значения различных физических величин, характеризуют данную систему. Например, периодические изменения давления и плотности воздуха, напряжения и силы электрического тока есть колебания этих величин.

Математически периодичность означает, что, если - есть периодическая функция времени с периодом Т , то при любом t выполняется равенство

2. Механические колебания – движения тела, которые точно или почти точно повторяются через равные интервалы времени.

Механические колебания возникают в системах, имеющих положение устойчивого равновесия. Согласно с принципом минимума потенциальной энергии, в положении устойчивого равновесия потенциальная энергия системы минимальна. Когда тело выводят из положения устойчивого равновесия, его потенциальная энергия возрастает. При этом возникает сила, направленная к положению равновесия (возвращающая сила), и чем дальше от положения равновесия отклоняется тело, тем больше его потенциальная энергия и тем больше модуль возвращающей силы. Например, при отклонении пружинного маятника от положения равновесия, роль возвращающей силы играет сила упругости, модуль которой изменяется пропорционально отклонению , где х отклонение маятника от положения равновесия. Потенциальная энергия пружинного маятника изменяется пропорционально квадрату смещения .

Аналогично возникают колебания нитяного маятника и шарика, движущегося по дну сферической чаши радиуса R , который можно рассматривать как нитяной маятник с длиной нити равной радиусу чаши (Рис.78).

3.Превращения энергии при механических колебаниях . Если отсутствуют силы трения, то полная механическая энергия тела, совершающего колебательное движение, остаётся постоянной. В процессе колебаний происходят периодические взаимные превращения потенциальной и кинетической энергии тела. Проведем рассуждения на примере колебаний нитяного маятника. Для упрощения рассуждений примем потенциальную энергию маятника в положении равновесия равной нулю. В крайнем отклонённом положении потенциальная энергия маятника максимальна, а кинетическая энергия равна нулю, т.к. в этом положении маятник находится в покое. При движении к положению равновесия высота маятника над поверхностью Земли уменьшается, уменьшается и потенциальная энергия, при этом возрастают его скорость и кинетическая энергия. В положении равновесия потенциальная энергия равна нулю, а кинетическая энергия максимальна. Продолжая движение по инерции, маятник проходит положение равновесия. После прохождения положения равновесия кинетическая энергия маятника убывает, но возрастает его потенциальная энергия. Когда произойдёт остановка маятника, его кинетическая энергия станет равной нулю, а потенциальная энергия достигнет максимума и всё повторится в обратном порядке.

По закону сохранения энергии потенциальная энергия маятника в крайнем отклоненном положении равна его кинетической в момент прохождения положения равновесия.

В процессе колебаний в любой момент времени полная механическая энергия маятника равна его потенциальной в крайнем отклонённом положении или кинетической энергии в момент прохождения положения равновесия

где высота маятника в крайнем отклоненном положении, скорость в момент прохождения положения равновесия.

4. Период колебания – минимальный интервал времени, через который происходит повторение движения, или интервал времени, в течение которого происходит одно полное колебание. Период (Т ) измеряется в секундах.

5. Частота колебании - определяет число полных колебаний, совершаемых за одну секунду. Частота и период связаны соотношением

Частота измеряется в герцах (Гц). Один герц – одно полное колебание совершаемое за одну секунду

6. Циклическая частота или круговая частота определяет число полных колебаний, свершаемых за секунд

Частота – величина положительная , .

7. Амплитуда механических колебаний – максимальное отклонение тела от положения равновесия. В общем случае колебаний амплитуда есть максимальное значение, которое принимает периодически изменяющаяся физическая величина.

8. Гармонические колебания – колебания, в которых колеблющаяся величина изменяется по закону синуса или косинуса (по гармоническому закону):

Здесь амплитуда колебаний, циклическая частота.

9. Фаза гармонического колебания – величина , стоящая под знаком синуса или косинуса. Фаза определяет значение колеблющейся величины в данный момент времени, начальная фаза, т.е. в момент начала отсчёта времени Простейшим примером гармонических колебаний является колебание проекции на оси координат точки m движущейся равномерно по окружности радиуса А в плоскости XOY , центр которой совпадает с началом координат (рис. 79)

Для простоты положим , т.е. тогда

Многие известные колебательные системы можно лишь приближенно считать гармоническими лишь приближенно при очень малых отклонениях. Главным условием гармонического колебания является постоянство циклической частоты и амплитуды. Например, при колебаниях нитяного маятника, угол отклонения от вертикали изменяется неравномерно, т.е. циклическая частота не постоянна. Если отклонения очень малы, то движение маятника происходит очень медленно и неравномерностью движения можно пренебречь, полагая . Чем медленнее движение, тем меньше сопротивление среды, те меньше потери энергии и меньше изменения амплитуды.

Итак, малые колебания можно приближенно считать гармоническими.

10. Аналитическое представление колебаний – запись колеблющейся величины в виде функции , выражающей зависимость величины от времени.

11. Графическое представление колебаний – представлениеколебаний в виде графика функции в координатных осях OX и t .

Например, аналитически гармоническое колебания записывается в виде , а его графическое представление изображается синусоидой - сплошная линия на Рис.80.

12.Скорость точки при гармоническом колебании – получим, дифференцируя по времени функцию х (t )

Где амплитуда скорости, пропорциональна циклической частоте и амплитуде смещения.

Итак, скорость V по синусоидальному закону с таким же периодом T, что и смещение х в пределах . Фаза скорости опережает фазу смещения на . Это значит, что скорость максимальна, когда точка проходит положение равновесия , а при максимальных смещениях точки её скорость равна нулю. График скорости представлен пунктирной линией на рис Рис.80

13. Ускорение точки при гармонических колебаниях получим, дифференцируя скорость по времени или дифференцируя смещение х дважды по времени:

Где - амплитуда ускорения пропорциональная амплитуде смещения и квадрату циклической частоты.

Ускорение точки при гармонических колебаниях изменяется по синусоидальному закону с тем же периодом Т , что и смещение в пределах Фаза ускорения опережает фазу смещения на . Ускорение равно нулю в момент прохождения точкой положения равновесия, На Рис.81 график ускорения изображен пунктирной линией, сплошная линия изображает график смещения.

Учитывая, что ускорение запишем в виде

Т.е. ускорение в гармоническом колебании пропорционально смещению и всегда направлено к положению равновесия (против смещения). Удаляясь от положения равновесия точка движется ускоренно, приближаясь к положению равновесия точка движется ускоренно.

14. Динамика гармонического колебания. Умножив ускорение точки, совершающей гармоническое колебание, на её массу получим согласно второму закону Ньютона силу, действующую на точку

Обозначим Теперь запишем силу, действующую на точку

Из последнего равенства следует, что гармонические колебания вызываются силой пропорциональной смещению и направленной против смещения, т.е. к положению равновесия.

15. Период колебаний пружинного маятника. Пружинный маятник совершает колебания под действием силы упругости

Сила пропорциональная смещению и направленная к положению равновесия вызывает гармонические колебания точки. Поэтому колебания пружинного маятника гармонические. Коэффициент жесткости равен

Помня, что получим период свободных колебаний пружинного маятника

Частота пружинного маятника равна

.

15. Математический маятник – материальная точка, подвешенная на бесконечно тонкой, невесомой, нерастяжимой нити, совершающая колебания в вертикальной плоскости, под действием силы тяжести.

Груз, подвешенный на нити, размеры которого пренебрежимо малы по сравнению с длиной нити, можно приближенно считать математическим маятником. Часто такой маятник называют нитяным маятником.

Рассмотрим малые колебания математического маятника длиной l . В положении равновесия сила тяжести уравновешена силой натяжения нити, т.е. .

Если отклонить маятник на малый угол , то сила тяжести и сила натяжения, направленные под углом друг к другу, в сумме дают равнодействующую силу ,которая направлена к положению равновесия. На Рис.82 отклонение маятника от вертикали равно

Угол настолько мал, что циклическую частоту, т.е. угловую скорость вращения нити можно считать постоянной. Поэтому и смещение маятника запишем в виде

Таким образом, малые колебания математического маятника есть гармонические колебания. Из Рис. 82 следует, что сила , но , следовательно

Где m, g, и l постоянные величины. Обозначим и получим модуль возвращающей силы в виде . Если учесть, что сила всегда направлена к положению равновесия, т.е. против смещения, то её выражение запишем в виде .

Итак, сила, вызывающая колебания математического маятника пропорциональна смещению и направлена против смещения, как при колебаниях пружинного маятника, т.е характер этой силы такой же как и силы упругой. Но по природе упругая сила есть сила электромагнитная. Сила же вызывающая колебания математического маятника по своей природе есть сила гравитационная – неэлектромагнитная поэтому её называютквазиупругой силой. Любая сила, которая действует как сила упругая, по природе не является электромагнитной, называется квазиупругой силой. Это позволяет нам записать выражение периода колебаний математического маятника в виде

.

Из этого равенства следует, что период колебаний математического маятника не зависит от массы маятника, но зависит от его длины и ускорения свободного падения. Зная период колебаний математического маятника и его длину, можно определить ускорение свободного падения в любой точке на поверхности Земли.

17. Колебания тела, плавающего на поверхности жидкости. Для простоты рассмотрим тело массы m в форме цилиндра с площадью основания S. Тело плавает частично погрузившись в жидкость, плотность которой (Рис. 83).

Пусть в положении равновесия глубина погружения . При этом равнодействующая силы Архимеда и силы тяжести равна нулю

.

Если изменить глубину погружения на х то сила Архимеда станет равной и модуль равнодействующей силы F станет отличен от нуля

Учитывая, что получим

Обозначая , модуль силы F в виде

Если глубина погружения увеличивается, т.е. тело смещается вниз, сила Архимеда становится больше силы тяжести и равнодействующая F направлена вверх, т.е. против смещения. Если же глубина погружения уменьшается, т.е. смещается вверх от положения равновесия, сила Архимеда становится меньше силы тяжести и равнодействующая F направлена вниз, т.е. против смещения.

Итак, сила F всегда направлена против смещения и её модуль пропорционален смещению

Эта сила квазиупругая и она вызывает гармонические колебания тела, плавающего на поверхности жидкости. Период этих колебаний вычисляется по общей для гармонических колебаний формуле

.

18. Колебания однородной жидкости в U-трубке . Пусть однородная жидкость массы m , плотность которой налита в U – образную трубку, площадь сечения которой S (Рис.84) В состоянии равновесия высоты столбов в обоих коленах трубки одинаковы, по закону сообщающихся сосудов для однородной жидкости.

Если жидкость вывести из состояния равновесия, то высоты столбов жидкости в коленах будут периодически изменяться, т.е. жидкость в трубке будет совершать колебания.

Пусть в некоторый момент времени высота столба жидкости в правом колене на х больше. чем в левом. Это значит, что на жидкость в трубке действует сил тяжести жидкости в столбе высотой х , , где - объём столба жидкости высотой x . Произведение величина постоянная, следовательно .

Таким образом, модуль силы F пропорционален разности высот столбов жидкости в коленах, т.е. пропорционален смещению жидкости в трубке. Направление этой силы всегда противоположно смещению, т.е.

Следовательно эта сила вызывает гармонические колебания жидкости в трубке. Период этих колебаний запишем по правилу для гармонических колебаний

19. Колебания тела в сферической чаше. Пусть тело скользит без трения в сферической чаше радиуса R (Рис. 78). При малых отклонениях от положения равновесия колебания этого тела можно рассматривать как гармонические колебания математического маятника, длина которого равна R , с периодом равным

20. Энергия гармонического колебания . В качестве примера рассмотрим колебания пружинного маятника. При смещении х

Если сила трения очень велика, то затухающие колебания не происходят. Тело, выведенное из положения равновесия какими-либо силами, после прекращения действия этих сил возвращается в положение равновесия и останавливается. Такое движение называется апериодическим (непериодическим). График апериодического движения представлен на Рис.86.

22. Вынужденные колебания – незатухающие колебания системы, которые вызываются внешними периодически меняющимися с течением времени силами (вынуждающие силы).

Если вынуждающая сила изменяется по гармоническому закону

, где амплитуда вынуждающей силы, её циклическая частота, то в системе могут установиться вынужденные гармонические колебания с циклической частотой равной частоте вынуждающей силы

.

23. Резонанс – резкое возрастание амплитуды вынужденных колебаний при совпадении частоты вынуждающей силы с частотой свободных колебаний системы . Если колебание происходит в среде, оказывающей сопротивление, то график зависимости амплитуды вынужденных колебаний от частоты вынуждающей силы выглядит так как на Рис.87

Вынуждающая сила, частота которой совпадает с частотой свободных колебаний системы, даже при очень малых амплитудах вынуждающей силы может вызвать колебания с очень большой амплитудой.

24. Свободные колебания. Собственная частота системы. Свободными колебаниями называют колебания системы, происходящие под действием её внутренних сил. Для пружинного маятника внутренней силой является сила упругости. Для математического маятника, который состоит из самого маятника и Земли, внутренней силой является сила тяжести. Для тела, плавающего на поверхности жидкости, внутренней силой является сила Архимеда.

25. Автоколебания – незатухающие колебания, происходящие в среде, за счет источника энергии не обладающего колебательными свойствами, компенсирующего потери энергии на преодоление сил трения. Автоколебательные системы получают равные порции энергии через равные интервалы времени например, через один период. Примером автоколебательной системы являются часы.

В колебательной системе происходит периодический переход одного вида энергии в другой, когда потенциальная энергия (энергия, зависящая от положения системы) переходит в кинетическую энергию (энергию движения) и наоборот.

Наглядное представление колебательного процесса можно получить, если построить график колебаний отдельной массы в координатах t (время) и y (перемещение).

Если в колебательную систему будет поступать внешняя энергия, колебания будут нарастающими (рис. 16.6 а). Если к консервативной системе внешняя энергия не поступает, колебания будут незатухающими (рис.16.6 б). Если энергия системы уменьшается (например, за счет трения в диссипативной системе), колебания будут затухающими (рис. 16.6 в).

Важной характеристикой колебательного процесса является форма колебаний. Форма колебаний – это кривая, показывающая положение точек колебательной системы относительно положения равновесия в фиксированный момент времени. Простейшие формы колебаний можно и наблюдать. Например, хорошо видны формы колебаний провода, висящего между двумя столбами, или струны гитары.

Колебания, происходящие при отсутствии внешней нагрузки, называются свободными колебаниями . Свободные колебания диссипативной системы являются затухающими, потому что ее полная энергия убывает. Энергия консервативной системы остается постоянной, и ее свободные колебания будут незатухающими. Однако в природе консервативных систем не существует, поэтому их колебания изучаются только теоретически. Свободные колебания консервативных систем называются собственными колебаниями .

Периодические колебания – это колебания, удовлетворяющие условию y(t)=y(t+T) . Здесь T – период колебаний, т.е. время одного колебания. Периодические колебания имеют и другие важные характеристики. Например, амплитуда a – это половина размаха колебания: a=(y max – y min )/2 , круговая частота – число колебаний за 2 секунды, техническая частота f – число колебаний за одну секунду. Обе эти частоты и период взаимосвязаны:

(Гц),(рад/с).

Гармонические колебания – это колебания, изменяющиеся по закону илиЗдесь фаза колебаний , начальная фаза .

Вынужденные колебания возникают под воздействием внешних сил.

Вибрация – это вынужденные колебания, происходящие с относительно малой амплитудой и не слишком малой частотой.

4. Виды динамических нагрузок

Колебания сооружения возникают от динамических нагрузок. В отличие от статических, динамические нагрузки изменяются с течением времени по величине, направлению или положению. Они сообщают массам системы ускорения, вызывают инерционные силы, что может привести к резкому возрастанию колебаний, и в итоге – к разрушению всего сооружения или его частей.

Рассмотрим основные виды динамических нагрузок.

– это нагрузка, прикладываемая к сооружению через определенный период. Источниками периодических нагрузок являются различные машины и механизмы: электродвигатели, металлообрабатывающие станки, вентиляторы, центрифуги и др. Если их вращающиеся части не уравновешены, то они при работе вызывают гармоническую нагрузку (нагрузку, изменяющуюся по закону синуса или косинуса). Такая нагрузка называется вибрационной нагрузкой . Поршневые компрессоры и насосы, штамповочные машины, дробилки, копры и др. создают негармоническую нагрузку .

Импульсные нагрузки создаются взрывом, падающими грузами или частями силовых установок (молотов, копров и др.).

Подвижные нагрузки создаются железнодорожными составами, автомобильным транспортом и др.

Весьма опасными являются недетерминированные (случайные) нагрузки . Это – ветровые, сейсмические, взрывные нагрузки.

(или собственные колебания ) — это колебания колебательной системы, совершаемые только благодаря первоначально сообщенной энергии (потенциальной или кинети-ческой) при отсутствии внешних воздействий.

Потенциальная или кинетическая энергия может быть сообщена, например, в механических системах через начальное смещение или начальную скорость.

Свободно колеблющиеся тела всегда взаимодействуют с другими телами и вместе с ними обра-зуют систему тел, которая называется колебательной системой .

Например, пружина, шарик и вертикальная стойка, к которой прикреплен верхний конец пружины (см. рис. ниже), входят в колебательную систему. Здесь шарик свободно скользит по струне (силы трения пренебрежимо малы). Если отвести шарик вправо и предоставить его самому себе, он будет совершать свободные колебания около положения равновесия (точки О ) вследствие действия силы упругости пружины, направленной к положению равновесия.

Другим классическим примером механической колебательной системы является математический маятник (см. рис. ниже). В данном случае шарик совершает свободные колебания под действием двух сил: силы тяжести и силы упругости нити (в колебательную систему входит также Земля). Их равнодействующая направлена к положению равновесия.

Силы, действующие между телами колебательной системы, называются внутренними силами . Внешними силами называют-ся силы, действующие на систему со стороны тел, не входящих в нее. С этой точки зрения свобод-ные колебания можно определить как колебания в системе под действием внутренних сил после того, как система выведена из положения равновесия.

Условиями возникновения свободных колебаний являются:

1) возникновение в них силы, возвращающей систему в положение устойчивого равновесия, после того как ее вывели из этого состояния;

2) отсутствие трения в системе.

Динамика свободных колебаний.

Колебания тела под действием сил упругости . Уравнение колебательного движения тела под действием силы упругости F () может быть получено с учетом второго закона Ньютона (F = mа ) и закона Гука (F упр = -kx ), где m — масса шарика, а — ускорение, приобретаемое шариком под действием силы упругости, k — коэффициент жесткости пружины, х — смещение тела от положения равновесия (оба уравнения записаны в проекции на горизонтальную ось Ох ). Приравнивая правые части этих уравнений и учитывая, что ускорение а — это вторая производная от координаты х (смещения), получим:

.

Аналогично выражение для ускорения а получим, дифференцируя (v = -v m sin ω 0 t = -v m x m cos (ω 0 t + π/2) ):

a = -a m cos ω 0 t,

где a m = ω 2 0 x m — амплитуда ускорения. Таким образом, амплитуда скорости гармонических коле-баний пропорциональна частоте, а амплитуда ускорения — квадрату частоты колебания.