Если Вы вдруг поняли, что подзабыли основы и постулаты квантовой механики или вообще не знаете, что это за механика такая, то самое время освежить в памяти эту информацию. Ведь никто не знает, когда квантовая механика может пригодиться в жизни.

Зря вы усмехаетесь и ехидствуете, думая, что уж с этим предметом вам в жизни вообще никогда не придется сталкиваться. Ведь квантовая механика может быть полезной практически каждому человеку, даже бесконечно далекому от нее. Например, у Вас бессонница. Для квантовой механики это не проблема! Почитайте перед сном учебник – и Вы спите крепчайшим сном странице уже эдак на третьей. Или можете назвать так свою крутую рок группу. Почему бы и нет?

Шутки в сторону, начинаем серьезный квантовый разговор.

С чего начать? Конечно, с того, что такое квант.

Квант

Квант (от латинского quantum – ”сколько”) – это неделимая порция какой-то физической величины. Например, говорят - квант света, квант энергии или квант поля.

Что это значит? Это значит, что меньше быть уже просто не может. Когда говорят о том, что какая-то величина квантуется, понимают, что данная величина принимает ряд определенных, дискретных значений. Так, энергия электрона в атоме квантуется, свет распространяется «порциями», то есть квантами.

Сам термин «квант» имеет множество применений. Квантом света (электромагнитного поля) является фотон. По аналогии квантами называются частицы или квазичастицы, соответствующие иным полям взаимодействия. Здесь можно вспомнить про знаменитый бозон Хиггса, который является квантом поля Хиггса. Но в эти дебри мы пока не лезем.


Квантовая механика для "чайников"

Как механика может быть квантовой?

Как Вы уже заметили, в нашем разговоре мы много раз упоминали о частицах. Возможно, Вы и привыкли к тому, что свет – это волна, которая просто распространяется со скоростью с . Но если посмотреть на все с точки зрения квантового мира, то есть мира частиц, все изменяется до неузнаваемости.

Квантовая механика – это раздел теоретической физики, составляющая квантовой теории, описывающая физические явления на самом элементарном уровне – уровне частиц.

Действие таких явлений по величине сравнимо с постоянной Планка, а классическая механика Ньютона и электродинамика оказались совершенно непригодными для их описания. Например, согласно классической теории электрон, вращаясь с большой скоростью вокруг ядра, должен излучать энергию и в конце концов упасть на ядро. Этого, как известно, не происходит. Именно поэтому и придумали квантовую механику – открытые явления нужно было как-то объяснить, и она оказалась именно той теорией, в рамках которой объяснение было наиболее приемлемым, а все экспериментальные данные "сходились".


Кстати! Для наших читателей сейчас действует скидка 10% на

Немного истории

Зарождение квантовой теории произошло в 1900 году, когда Макс Планк выступил на заседании немецкого физического общества. Что тогда сообщил Планк? А то, что излучение атомов дискретно, а наименьшая порция энергии этого излучения равна

Где h - постоянная Планка, ню - частота.

Затем Альберт Эйнштейн, введя понятие “квант света” использовал гипотезу Планка для объяснения фотоэффекта. Нильс Бор постулировал существование у атома стационарных энергетических уровней, а Луи де Бройль развил идею о корпускулярно-волновом дуализме, то есть о том, что частица (корпускула) обладает также и волновыми свойствами. К делу присоединились Шредингер и Гейзенберг, и вот, в 1925 году публикуется первая формулировка квантовой механики. Собственно, квантовая механика – далеко не законченная теория, она активно развивается и в настоящее время. Также следует признать, что квантовая механика с ее допущениями не имеет возможности объяснить все стоящие перед ней вопросы. Вполне возможно, что на смену ей придет более совершенная теория.


При переходе от мира квантового к миру привычных нам вещей законы квантовой механики естественным образом трансформируются в законы механики классической. Можно сказать, что классическая механика – это частный случай квантовой механики, когда действие имеет место быть в нашем с Вами привычном и родном макромире. Здесь тела спокойно движутся в неинерциальных системах отсчета со скоростью, гораздо меньшей скорости света, и вообще - все вокруг спокойно и понятно. Хочешь узнать положение тела в системе координат – нет проблем, хочешь измерить импульс – всегда пожалуйста.

Совершенно иной подход к вопросу имеет квантовая механика. В ней результаты измерений физических величин носят вероятностный характер. Это значит, что при изменении какой-то величины возможно несколько результатов, каждому из которых соответствует определенная вероятность. Приведем пример: монетка крутится на столе. Пока она крутится, она не находится в каком-то определенном состоянии (орел-решка), а имеет лишь вероятность в одном из этих состояний оказаться.

Здесь мы плавно подходим к уравнению Шредингера и принципу неопределенности Гейзенберга .

Согласно легенде Эрвин Шредингер, в 1926 году выступая на одном научном семинаре с докладом на тему корпускулярно-волнового дуализма, был подвергнут критике со стороны некоего старшего ученого. Отказавшись слушать старших, Шредингер после этого случая активно занялся разработкой волнового уравнения для описания частиц в рамках квантовой механики. И справился блестяще! Уравнение Шредингера (основное уравнение квантовой механики) имеет вид:

Данный вид уравнения – одномерное стационарное уравнение Шредингера – самый простой.

Здесь x - расстояние или координата частицы, m - масса частицы, E и U - соответственно ее полная и потенциальная энергии. Решение этого уравнения – волновая функция (пси)

Волновая функция – еще одно фундаментальное понятие в квантовой механике. Так, у любой квантовой системы, находящейся в каком-то состоянии, есть волновая функция, описывающая данное состояние.

Например, при решении одномерного стационарного уравнения Шредингера волновая функция описывает положение частицы в пространстве. Точнее говоря, вероятность нахождения частицы в определенной точке пространства. Иными словами, Шредингер показал, что вероятность может быть описана волновым уравнением! Согласитесь, до этого нужно было додуматься!


Но почему? Почему мы должны иметь дело с этими непонятными вероятностями и волновыми функциями, когда, казалось бы, нет ничего проще, чем просто взять и измерить расстояние до частицы или ее скорость.

Все очень просто! Ведь в макромире это действительно так – мы с определенной точностью измеряем расстояние рулеткой, а погрешность измерения определяется характеристикой прибора. С другой стороны, мы можем практически безошибочно на глаз определить расстояние до предмета, например, до стола. Во всяком случае, мы точно дифференцируем его положение в комнате относительно нас и других предметов. В мире же частиц ситуация принципиально иная – у нас просто физически нет инструментов измерения, чтобы с точностью измерить искомые величины. Ведь инструмент измерения вступает в непосредственный контакт с измеряемым объектом, а в нашем случае и объект, и инструмент – это частицы. Именно это несовершенство, принципиальная невозможность учесть все факторы, действующие на частицу, а также сам факт изменения состояния системы под действием измерения и лежат в основе принципа неопределенности Гейзенберга.

Приведем самую простую его формулировку. Представим, что есть некоторая частица, и мы хотим узнать ее скорость и координату.

В данном контексте принцип неопределенности Гейзенберга гласит: невозможно одновременно точно измерить положение и скорость частицы . Математически это записывается так:

Здесь дельта x - погрешность определения координаты, дельта v - погрешность определения скорости. Подчеркнем – данный принцип говорит о том, что чем точнее мы определим координату, тем менее точно будем знать скорость. А если определим скорость, не будем иметь ни малейшего понятия о том, где находится частица.

На тему принципа неопределенности существует множество шуток и анекдотов. Вот один из них:

Полицейский останавливает квантового физика.
- Сэр, Вы знаете, с какой скоростью двигались?
- Нет, зато я точно знаю, где я нахожусь


И, конечно, напоминаем Вам! Если вдруг по какой-то причине решение уравнения Шредингера для частицы в потенциальной яме не дает Вам уснуть, обращайтесь к – профессионалам, которые были взращены с квантовой механикой на устах!

Возврат машины по гарантии или квантовая физика для чайников.

Предположим, сейчас 3006 год. Вы идете в «связной» и покупаете бюджетную китайскую машину времени в рассрочку на 600 лет. Хотите шнырнуть на недельку вперед чтобы обставить букмекерскую контору. В предвкушении большого куша судорожно набираете дату прибытия на синей пластмассовой коробочке…

И вот смехота: В ней с ходу сгорает Никадимово-хрононный преобразователь. Машинка, издав предсмертный писк закидывает вас в 62342 год. Человечество разделилось на спинопяточников и оглобленных и разлетелось по дальним галактикам. Солнце распродано инопланетянам, Землей правят гигантские радиоактивные кремниевые черви. Атмосфера - смесь фтора и хлора. Температура минус 180 градусов. Земля эрозировала и вы в добавок падаете на скалу из флюоритовых кристаллов метров с пятнадцати. На последнем выдохе вы пользуетесь своим гражданским галактическим правом одного межвременного звонка по своему брелку. Звоните в центр технической поддержки «связного», где вам вежливый робот сообщает, что гарантия на машину времени составляет 100 лет и в их времени она совершенно исправна, а в 62342 году вам накапало непроизносимое человеческим речевым механизмом количество миллионов пенни по так и не выплаченной ни разу рассрочке.

Спаси и сохрани! Господи, спасибо, что мы живем в этом зачуханном медвежьем прошлом, где такие оказии невозможны!
…Хотя, нет! Просто большинство крупных научных открытий дают не столь эпичные результаты, как то представляется различным фантастам.

Лазеры не сжигают города и планеты - они записывают и передают информацию, развлекают школьников. Нанотехнологии не превращают вселенную в самовоспроизводящееся полчище наноботов. Они делают дождевик более непромокаемым, а бетон - более долговечным. Атомная бомба, взорванная в море так ни разу и не запустила цепную реакцию термоядерного синтеза ядер водорода и не превратила нас в еще одно солнце. Адронный коллайдер не вывернул планету наизнанку и не затащил весь мир в черную дыру. Искусственный интеллект уже создан, только вот над идеей уничтожения человечества он только насмехается.
Машина времени - не исключение. Дело в том, что она была создана еще в середине прошлого века. Была построена не как самоцель, а лишь как инструмент для создания одного маленько, невзрачного, но весьма примечательного устройства.

В свое время профессор Дмитрий Николаевич Грачев был сильно озадачен вопросом создания эффективных средств защиты от радиоизлучения. Задача на первый взгляд казалась невыполнимой - устройство на каждую радиоволну должно было выдавать в ответ свою такую же и при этом не быть никак привязано к источнику сигнала (поскольку он вражеский). Дмитрий Николаевич однажды наблюдал как во дворе дети играют в «вышибала». В игре побеждает самый шустрый, кто эффективнее всех уклоняется от мяча. Для этого нужна координация, а главное - умение предсказывать траекторию мяча.

Способность предсказывать определяется вычислительным ресурсом. Но в нашем случае наращивание вычислительных ресурсов ни к чему не приведет. На это не хватит скорости и точности даже у самых современных суперкомпьютеров. Речь шла о предсказании спонтанного процесса со скоростью полупериода СВЧ - радиоволны.

Профессор подобрал улетевший в кусты мяч и бросил его обратно детям. Зачем предсказывать куда летит мяч, когда он уже прилетел? Выход был найден: характеристики неизвестного входного радиосигнала прекрасно известны в недалеком будущем и вычислять их попросту незачем. Их достаточно там непосредственно измерить. Но вот незадача - перемещаться во времени даже на наносекундочку невозможно. Однако, для поставленной задачи этого и не требовалось. Нужно лишь, чтобы чувствительный элемент устройства - транзистор находился в недалеком будущем хотя бы частично. И тут на помощь пришло недавно открытое явление квантовой суперпозиции. Смысл его в том, что одна и та же частица может находиться в разных местах и временах одновременно.

По итогу профессором Грачевым была создана Массоориентированная квантовая электронная ловушка - настоящая машина времени, в которой был впервые создан полупроводниковый чип, часть электронов которого находятся в будущем и одновременно в настоящем. Прототип того самого ТМА - чипа, управляющего резонатором Грачева. Можно сказать, что эта штука всегда будет одной ногой в будущем.

Многим людям физика кажется такой далекой и запутанной, а квантовая - уж тем более. Но я хочу раскрыть для вас завесу этой великой тайны, потому что на деле все оказывается странно, но распутываемо.

А также квантовая физика - отличный предмет для разговора с умными людьми.

Квантовая физика - это просто

Для начала вам нужно начертить в голове одну большую линию между микромиром и макромиром, потому что эти миры совершенно различны. Все, что вы знаете о привычном себе пространстве и предметах в нем, является ложным и неприемлемым в квантовой физике.

Фактически, микрочастицы не имеют ни скорости, ни определенного положения, пока ученые на них не посмотрят. Это утверждение кажется нам просто абсурдным, таковым оно казалось и Альберту Эйнштейну, но даже великий физик пошел на попятную.

Дело в том, что проводившиеся исследования доказали, что посмотрев один раз частицу, которая занимала определенное положение, а затем отвернувшись и снова посмотрев, вы увидите, что эта частица уже заняла совершенно иное положение.

Эти шаловливые частицы

Все кажется простым, но когда мы смотрим на ту же частицу, она стоит на месте. То есть эти частицы движутся только тогда, когда мы не можем этого видеть.

Суть такова, что каждая частица (по теории вероятности) обладает шкалой вероятностей находиться в том или ином положении. И когда мы отворачиваемся, а затем снова поворачиваемся, то можем застать частицу в любом из ее возможных положений именно согласно шкале вероятности.

По исследованию частицу искали в разных местах, затем прекращали наблюдать за ней, а затем снова смотрели, как изменилось ее положение. Результат был просто ошеломительным. Подведя итоги, ученые действительно смогли составить шкалу вероятностей, где может находиться та или иная частица.

Например, нейтрон имеет возможность находиться в трех положениях. Проведя исследования, вы можете обнаружить, что в первом положении он будет находиться с вероятностью 15%, во втором - 60%, в третьем - 25%.

Эту теорию никто еще не смог опровергнуть, поэтому она является, как ни странно, самой правильной.

Макромир и микромир

Если мы возьмем предмет из макромира, то увидим, что он тоже обладает шкалой вероятности, но она совершенно другая. Например, вероятность того, что отвернувшись, вы найдете свой телефон на другом конце мира равна практически нулю, но она все равно существует.

Тогда спрашивается, как же так еще не было зафиксировано подобных случаев. Это объясняется тем, что вероятность настолько мала, что человечеству пришлось бы ждать столько лет, сколько еще не прожила наша планета и целая вселенная, чтобы увидеть подобное событие. Выходит, что ваш телефон почти со стопроцентной вероятностью окажется именно там, где вы его видели.

Квантовое туннелирование

Отсюда можно выйти на понятие квантового туннелирования. Это понятие о постепенном переходе одного предмета (это если очень грубо выражаться) в совершенно другое место без каких-либо внешних воздействий.

То есть начаться все может с одного нейтрона, который в один прекрасный момент попадет в ту самую почти нулевую вероятность находиться в совершенно ином месте, а чем больше нейтронов будет находиться в другом месте, тем выше будет становится вероятность.

Конечно, для такого перехода потребуется столько лет, сколько еще не прожила наша планета, но, согласно теории квантовой физики, квантовое туннелирование имеет место быть.

Прочтите также:

  • Перевод

По словам Оуэна Маруни, работающего физиком в Оксфордском университете, с момента появления квантовой теории в 1900-х годах все говорили о странности этой теории. Как она позволяет частицам и атомам двигаться в нескольких направлениях одновременно, или одновременно вращаться по часовой и против часовой стрелки. Но словами ничего не докажешь. «Если мы рассказываем общественности, что квантовая теория очень странная, нам необходимо проверить это утверждение экспериментально,- говорит Маруни. – А иначе мы не наукой занимаемся, а рассказываем про всякие закорючки на доске».

Именно это навело Маруни сотоварищи на мысль разработать новую серию экспериментов для раскрытия сути волновой функции – загадочной сущности, лежащей в основе квантовых странностей. На бумаге, волновая функция – просто математический объект, обозначаемый буквой пси (Ψ) (одна из тех самых закорючек), и используется для описания квантового поведения частиц. В зависимости от эксперимента, волновая функция позволяет учёным вычислять вероятность наблюдения электрона в каком-то конкретном месте, или шансы того, что его спин ориентирован вверх или вниз. Но математика не говорит о том, что на самом деле такое волновая функция. Это нечто физическое? Или просто вычислительный инструмент, позволяющий работать с невежественностью наблюдателя касательно реального мира?

Использованные для ответа на вопрос тесты очень тонкие, и им всё ещё предстоит выдать однозначный ответ. Но исследователи оптимистичны в том, что развязка близка. И им, наконец, удастся ответить на вопросы, мучавшие всех десятки лет. Может ли частица реально быть во многих местах одновременно? Делится ли Вселенная постоянно на параллельные миры, в каждом из которых существует наша альтернативная версия? Существует ли вообще нечто под названием «объективная реальность»?

«Такие вопросы рано или поздно появляются у любого»,- говорит Алессандро Федриччи, физик из Квинслендского университета (Австралия). «Что на самом деле реально?»

Споры о существе реальности начались ещё тогда, когда физики выяснили, что волна и частица – лишь две стороны одной медали. Классический пример – эксперимент с двумя щелями, где отдельные электроны выстреливаются в барьер, имеющий две щели: электрон ведёт себя так, будто проходит через две щели одновременно, создавая полосатый рисунок интерференции с другой её стороны. В 1926 году австрийский физик Эрвин Шрёдингер придумал волновую функцию для описания этого поведения и вывел уравнение, позволявшее вычислять её для любой ситуации. Но ни он, ни кто либо ещё, не мог ничего рассказать о природе этой функции.

Благодать в невежестве

С практической точки зрения её природа не важна. Копенгагенская интерпретация квантовой теории, созданная в 1920-х годах Нильсом Бором и Вернером Гейзенбергом, использует волновую функцию просто как инструмент для предсказания результатов наблюдений, позволяя не думать о том, что происходит при этом в реальности. «Нельзя винить физиков в такой модели поведения, „заткнись и считай“, поскольку она привела к значительным прорывам в ядерной и атомной физике, физике твёрдого тела и физике элементарных частиц»,- говорит Джин Брикмонт, специалист по статистической физике Католического университета в Бельгии. «Поэтому люди советуют не волноваться относительно фундаментальных вопросов».

Но некоторые всё равно волнуются. К 1930-м годам Эйнштейн отверг копенгагенскую интерпретацию, не в последнюю очередь потому, что она позволяла двум частицам спутывать свои волновые функции, что приводило к ситуации, в которой измерения одной из них могли мгновенно дать состояние другой, даже если они при этом разделены огромными расстояниями. Чтобы не смиряться с этим «пугающим взаимодействием на расстоянии», Эйнштейн предпочитал верить, что волновые функции частиц были неполны. Он говорил, что возможно, у частиц есть некие скрытые переменные, определяющие результат измерения, которые не были замечены квантовой теорией.

Эксперименты с тех пор продемонстрировали работоспособность пугающего взаимодействия на расстоянии, что отвергает концепцию скрытых переменных. но это не остановило остальных физиков интерпретировать их по-своему. Эти интерпретации делятся на два лагеря. Одни соглашаются с Эйнштейном в том, что волновая функция отражает наше невежество. Это то, что философы зовут пси-эпистемическими моделями. А другие рассматривают волновую функцию как реальную вещь – пси-онтические модели.

Чтобы понять разницу, представим себе мысленный эксперимент Шрёдингера, описанный им в 1935 году в письме Эйнштейну. Кот находится в стальной коробке. Коробка содержит образец радиоактивного материала, у которого есть 50% шанс испустить продукт распада за один час, и аппарат, отравляющий кота в случае, если этот продукт будет обнаружен. Поскольку радиоактивный распад – событие квантового уровня, пишет Шрёдингер, правила квантовой теории говорят, что в конце часа волновая функция внутренностей коробки должна быть смесью из мёртвого и живого кота.

«Грубо говоря,- мягко выражается Федриччи,- в пси-эпистемической модели кот в коробке либо жив, либо мёртв, и мы просто не знаем этого из-за того, что коробка закрыта». А в большинстве пси-онтических моделей существует согласие с копенгагенской интерпретацией: пока наблюдатель не откроет коробку, кот одновременно будет и жив и мёртв.

Но тут спор заходит в тупик. Какая из интерпретаций истинна? На этот вопрос сложно ответить экспериментально, поскольку разница между моделями очень тонка. Они по сути должны предсказать то же квантовое явление, что и очень успешная копенгагенская интерпретация. Эндрю Уайт, физик из Квинслендского университета, говорит, что за его 20-летнюю карьеру в квантовых технологиях «эта задача была как огромная гладкая гора без уступов, к которой нельзя было подступиться».

Всё поменялось в 2011 году, с опубликованием теоремы о квантовых измерениях, которая вроде бы устранила подход «волновая функция как невежество». Но по ближайшему рассмотрению оказалось, что эта теорема оставляет достаточно место для их манёвра. Тем не менее, она вдохновила физиков серьёзно задуматься о способах решения спора путём тестирования реальности волновой функции. Маруни уже разработал эксперимент, который в принципе работоспособен, и он с коллегами вскоре нашёл способ заставить его работать на практике. Эксперимент был проведён в прошлом году Федриччи, Уайтом и другими.

Для понимания идеи теста представьте две колоды карт. В одной есть только красные, в другой – только тузы. «Вам дают карту и просят определить, из какой она колоды»,- говорит Мартин Рингбауэр, физик из того же университета. Если это красный туз, «случается пересечение, и вы не сможете сказать этого определённо». Но если вы знаете, сколько карт в каждой колоде, можно подсчитать, как часто будет возникать такая двусмысленная ситуация.

Физика в опасности

Такая же двусмысленность случается и в квантовых системах. Не всегда можно одним измерением узнать, например, как поляризован фотон. «В реально жизни просто отличить запад от направления чуть южнее запада, но в квантовых системах это не так просто»,- говорит Уайт. Согласно стандартной копенгагенской интерпретации, нет смысла спрашивать о поляризации, поскольку у вопроса нет ответа – пока ещё одно измерение не определит ответ в точности. Но согласно модели «волновая функция как невежество», вопрос имеет смысл – просто в эксперименте, как и в том, с колодами карт, не хватает информации. Как и с картами, возможно предсказать, сколько двусмысленных ситуаций можно объяснить таким невежеством, и сравнить с большим количеством двусмысленных ситуаций, разрешённых стандартной теорией.

Именно это и проверяли Федриччи с командой. Группа измеряла поляризацию и другие свойства в луче фотонов, и находила уровень пересечений, который нельзя объяснить моделями «невежества». Результат поддерживает альтернативную теорию – если объективная реальность существует, то существует и волновая функция. «Впечатляет, что команда смогла решить такую сложную задачу таким простым экспериментом»,- говорит Андреа Альберти, физик из Университета Бонна (Германия).

Вывод ещё не высечен в граните: поскольку детекторы улавливали лишь пятую часть использованных в тесте фотонов, приходится предполагать, что утерянные фотоны вели себя точно так же. Это сильное предположение, и сейчас группа работает над тем, чтобы уменьшить потери и выдать более определённый результат. В это время команда МАруни в Оксфорде работает с Университетом Нового Южного Уэльса (Австралия), чтобы повторить такой опыт с ионами, которых проще отслеживать. «В ближайшие шесть месяцев у нас будет неоспоримая версия этого эксперимента»,- говорит Маруни.

Но даже если их ждёт успех и победят модели «волновая функция как реальность», то и у этих моделей есть разные варианты. Экспериментаторам придётся выбирать один из них.

Одна из самых ранних интерпретаций была сделана в 1920-х годах французом Луи де Бройлем, и расширена в 1950-х американцем Дэвидом Бомом. Согласно моделям Бройля-Бома, у частиц есть определённое местоположение и свойства, но их ведёт некая «пилотная волна», которая и определяется как волновая функция. Это объясняет эксперимент с двумя щелями, поскольку пилотная волна может пройти через обе щели и выдать картину интерференции, хотя сам электрон, влекомый ею, проходит только через одну щель из двух.

В 2005 году эта модель получила неожиданную поддержку. Физики Эммануэль Форт, сейчас работающий в Институте Лангевина в Париже, и Ив Кодье из Университета Париж Дидро задали студентам простую, по их мнению, задачку: поставить эксперимент, в котором капли масла, падающие на поднос, будут сливаться из-за вибраций подноса. К удивлению всех вокруг капель начали образовываться волны, когда поднос вибрировал с определённой частотой. «Капли начали передвигаться самостоятельно по своим собственным волнам»,- говорит Форт. «Это был дуальный объект – частица, влекомая волной».

С тех пор форт и Кодье показали, что такие волны могут провести свои частицы в эксперименте с двумя щелями точно как предсказывает теория пилотной волны, и могут воспроизводить другие квантовые эффекты. Но это не доказывает существование пилотных волн в квантовом мире. «Нам говорили, что такие эффекты в классической физике невозможны,- говорит Форт. – И тут мы показали, что возможны».

Ещё один набор моделей, основанных на реальности, разработанный в 1980-х, пытается объяснить сильную разницу свойств у больших и малых объектов. «Почему электроны и атомы могут быть в двух местах одновременно, а столы, стулья, люди и коты – не могут»,-говорит Анджело Баси, физик Триестского университета (Италия). Известные как «коллапсные модели», эти теории говорят, что волновые функции отдельных частиц реальны, но могут терять свои квантовые свойства и приводить частицу в определённое положение в пространстве. Модели построены так, что шансы такого коллапса чрезвычайно малы для отдельной частицы, так что на атомном уровне доминируют квантовые эффекты. Но вероятность коллапса быстро растёт при объединении частиц, и макроскопические объекты полностью теряют свои квантовые свойства и ведут себя согласно законам классической физики.

Один из способов это проверить – искать квантовые эффекты у больших объектов. Если верна стандартная квантовая теория, то ограничений на размер нет. И физики уже провели эксперимент с двумя щелями при помощи больших молекул. Но если верны модели коллапса, то квантовые эффекты не будут видны при превышении определённой массы. Разные группы планируют искать эту массу, используя холодные атомы, молекулы, металлические кластеры и наночастицы. Они надеются обнаружить результаты в ближайшие десять лет. «Что классно с этими экспериментами, так это то, что мы будем подвергать квантовую теорию точным тестам там, где её ещё не проверяли»,- говорит Маруни.

Параллельные миры

Одна модель «волновая функция как реальность» уже известна и любима писателями-фантастами. Это многомировая интерпретация, выработанная в 1950-х Хью Эвереттом, который в то время был студентом Принстонского университета в Нью-Джерси. В этой модели волновая функция так сильно определяет развитие реальности, что при каждом квантовом измерении Вселенная расщепляется на параллельные миры. Иными словами, открывая коробку с котом, мы порождаем две Вселенные – одна с мёртвым котом, а другая – с живым.

Сложно разделить эту интерпретацию и стандартную квантовую теорию, поскольку их предсказания совпадают. Но в прошлом году Говард Вайзман из Гриффитского университета в Брисбейне с коллегами предложил модель мультивёрса, которую можно проверить. В их модели нет волновой функции – частицы подчиняются классической физике, законам Ньютона. А странные эффекты квантового мира появляются потому, что между частицами и их клонами в параллельных вселенных есть отталкивающие силы. «Отталкивающая сила между ними порождает волны, распространяющиеся по всем параллельным мирам»,- говорит Вайзман.

Используя компьютерную симуляцию, в которой взаимодействовали 41 вселенная, они показали, что модель грубо воспроизводит несколько квантовых эффектов, включая траектории частиц в эксперименте с двумя щелями. При увеличении количества миров рисунок интерференции стремится к реальному. Поскольку предсказания теории разнятся в зависимости от количества миров, говорит Вайзман, можно проверить, права ли модель мультивёрса – то есть, что никакой волновой функции нет, а реальность работает по классическим законам.

Поскольку в этой модели волновая функция не нужна, она останется жизнеспособной, даже если будущие эксперименты исключат модели с «невежеством». Кроме неё выживут другие модели, например, копенгагенская интерпретация, которые утверждают, что нет объективной реальности, а есть лишь вычисления.

Но тогда, как говорит Уайт, этот вопрос и станет объектом изучения. И хотя пока никто не знает, как это сделать, «что было бы реально интересным, так это разработать тест, проверяющий, есть ли у нас вообще объективная реальность».

Услышав слова «квантовая физика» люди обычно отмахиваются: «Это что-то страшно сложное». Между тем, это совершенно не так, и в слове «квантовый» нет ровным счётом ничего страшного. Непонятного – хватает, интересного – очень много, а страшного – нет.

Про книжные полки, лесенки и Ивана Ивановича

Все процессы, явления и величины в окружающем нас мире можно разделить на две группы: непрерывные (по-научному континуальные ) и прерывные (по-научному дискретные или квантованные ).

Представьте себе стол, на который можно положить книгу. Вы можете положить книгу в любое место на столе. Справа, слева, посередине... Куда хотите – туда и положите. В этом случае физики говорят, что положение книги на столе изменяется непрерывно .

А теперь представьте книжные полки. Вы можете поставить книгу на первую полку, на вторую, на третью или на четвёртую – однако не можете поставить книгу «где-то между третьей и четвёртой». В этом случае положение книги изменяется прерывно , дискретно , квантованно (все эти слова обозначают одно и то же).

Окружающий мир полон непрерывных и квантованных величин. Вот две девочки – Катя и Маша. Их рост 135 и 136 сантиметров. Какая это величина? Рост изменяется непрерывно, он может быть и 135 с половиной сантиметров, и 135 сантиметров с четвертью. А вот номер школы, в которой девочки учатся – это величина квантованная! Допустим, Катя учится в школе № 135, а Маша – в школе № 136. Однако никто из них не может учиться в школе № 135 с половиной, правда?

Другой пример квантованной системы – шахматная доска. На шахматной доске 64 клетки, и каждая фигура может занимать только одну клетку. Можем ли мы поставить пешку где-то между клетками или поставить на одну клетку сразу две пешки? Фактически – можем, но по правилам – нет.


Континуальный спуск

А вот горка на детской площадке. Дети скатываются с неё вниз – потому что высота горки изменяется плавно, непрерывно. Теперь представьте себе, что эта горка вдруг (взмах волшебной палочки!) превратилась в лестницу. Скатиться с неё на попе уже не выйдет. Придётся идти ногами – сперва один шаг, потом второй, потом третий. Величина (высота) у нас изменялась непрерывно – а стала изменяться шагами, то есть дискретно, квантованно .

Квантованный спуск

Давайте проверим!

1. Сосед по даче Иван Иванович отправился в соседнюю деревню и сказал «отдохну где-нибудь по дороге».

2. Сосед по даче Иван Иванович отправился в соседнюю деревню и сказал «поеду каким-нибудь автобусом».

Какая из этих двух ситуаций («систем») может считаться непрерывной, а какая – квантованной?

Ответ:

В первом случае Иван Иванович идёт пешком и может остановиться отдохнуть в абсолютно любой точке. Значит, данная система – непрерывная.

Во втором – Иван Иванович может сесть в подошедший на остановку автобус. Может пропустить и подождать следующего автобуса. Но вот сесть «где-то между» автобусами у него не получится. Значит, данная система – квантованная!

Во всём виновата астрономия

О существовании непрерывных (континуальных) и прерывных (квантованных, разрывных, дискретных) величин прекрасно знали ещё древние греки. В своей книге «Псаммит» («Исчисление песчинок») Архимед даже сделал первую попытку установить математическую связь между непрерывными и квантованными величинами. Тем не менее, никакой квантовой физики в те времена не существовало.

Её не существовало вплоть до самого начала 20 века! Такие великие физики, как Галилей, Декарт, Ньютон, Фарадей, Юнг или Максвелл слыхом не слыхивали ни про какую квантовую физику и прекрасно без неё обходились. Вы можете спросить: зачем же тогда учёные придумали квантовую физику? Что такое особенное в физике приключилось? Представьте себе, приключилось. Только совсем не в физике, а в астрономии!

Загадочный спутник

В 1844 году немецкий астроном Фридрих Бессель наблюдал самую яркую звезду нашего ночного неба – Сириус. К тому времени астрономы уже знали, что звёзды в нашем небе не являются неподвижными – они движутся, только очень-очень медленно. При этом каждая звезда – это важно! – движется по прямой линии. Так вот, при наблюдениях Сириуса оказалось, что он движется совсем не по прямой. Звезду как бы «шатало» то в одну сторону, то в другую. Путь Сириуса в небе был похож на извилистую линию, которую математики называют «синусоида».


Звезда Сириус и её спутник - Сириус Б

Было понятно, что сама по себе звезда так двигаться не может. Чтобы превратить движение по прямой линии в движение по синусоиде, нужна некая «возмущающая сила». Поэтому Бессель предположил, что вокруг Сириуса вращается тяжёлый спутник – это было самое естественное и разумное объяснение.

Однако расчёты показывали, что масса этого спутника должна быть приблизительно как у нашего с вами Солнца. Тогда почему же мы не видим этот спутник с Земли? Сириус расположен от солнечной системы недалеко – каких-то два с половиной парсека, и объект размером с Солнце должен быть виден очень хорошо...

Трудная получалась задачка. Одни учёные говорили, что этот спутник представляет собой холодную, остывшую звезду – поэтому она абсолютно чёрная и невидима с нашей планеты. Другие говорили, что этот спутник не чёрный, а прозрачный, – потому мы его и не видим. Астрономы всего мира смотрели на Сириус в телескопы и пытались «поймать» загадочный невидимый спутник, а он как будто издевался над ними. Было от чего удивиться, сами понимаете...

Нам нужен чудо-телескоп!

В такой телескоп люди впервые увидели спутник Сириуса

В середине 19-го века в США жил и работал выдающийся конструктор телескопов Элвин Кларк. По первой профессии он был художником, но волей случая превратился в первоклассного инженера, стеклодела и астронома. До сих пор никто не сумел превзойти его потрясающие линзовые телескопы! Один из объективов работы Элвина Кларка (диаметром 76 сантиметров) можно увидеть в Санкт-Петербурге, в музее Пулковской обсерватории...

Однако мы отвлеклись. Итак, в 1867 году Элвин Кларк построил новый телескоп – с объективом диаметром 47 сантиметров; это был самый большой телескоп в США на тот момент. В качестве первого небесного объекта для наблюдений на испытаниях был выбран именно загадочный Сириус. И надежды астрономов блестяще оправдались – в первую же ночь неуловимый спутник Сириуса, предсказанный Бесселем, был обнаружен.

Из огня да в полымя...

Однако, получив данные наблюдений Кларка, астрономы радовались совсем недолго. Ведь, согласно расчётам, масса спутника должна быть приблизительно такая же, как у нашего Солнца (в 333 000 раз больше массы Земли). Но вместо огромного чёрного (или прозрачного) небесного светила астрономы увидели... крохотную белую звёздочку! Эта звёздочка была очень горячей (25 000 градусов, сравните с 5 500 градусами нашего Солнышка) и одновременно крохотной (по космическим меркам), размерами не больше Земли (впоследствии такие звёзды назвали «белыми карликами»). Получалось, что у этой звёздочки совершенно невообразимая плотность. Из какого же она тогда состоит вещества?!

На Земле мы знаем материалы с высокой плотностью – скажем, это свинец (кубик со стороной в сантиметр, сделанный из этого металла, весит 11.3 грамма) или золото (19.3 грамма на кубический сантиметр). Плотность вещества спутника Сириуса (его назвали «Сириус Б») составляет миллион (!!!) граммов на кубический сантиметр – оно в 52 тысячи раз тяжелее золота!

Возьмём, например, обычный спичечный коробок. Его объём – 28 кубических сантиметров. Значит, спичечный коробок, наполненный веществом спутника Сириуса, будет весить... 28 тонн! Попробуйте представить – на одной чашке весов спичечный коробок, а на второй – танк!

Была ещё одна проблема. В физике есть закон, который называется законом Шарля. Он утверждает, что в одном и том же объёме давление вещества тем выше, чем выше температура этого вещества. Вспомните, как срывает давлением горячего пара крышку с закипевшего чайника – и сразу поймёте, о чём речь. Так вот, температура вещества спутника Сириуса этот самый закон Шарля нарушала самым бессовестным образом! Давление было невообразимым, а температура – относительно низкой. В итоге получались «неправильные» физические законы и вообще «неправильная» физика. Как у Винни-Пуха – «неправильные пчёлы и неправильный мёд».

Совсем голова кругом...

Чтобы «спасти» физику, в начале 20 века учёным пришлось признать, что в мире существует сразу ДВЕ физики – одна «классическая», известная уже две тысячи лет. А вторая – необычная, квантовая . Учёные предположили, что на обычном, «макроскопическом» уровне нашего мира работают законы классической физики. А вот на самом маленьком, «микроскопическом» уровне вещество и энергия подчиняются совершенно другим законам – квантовым.

Представьте себе нашу планету Земля. Вокруг неё сейчас вращается больше 15 000 самых разных искусственных объектов, каждый по своей орбите. Причём эту орбиту при желании можно поменять (скорректировать) – скажем, периодически корректируется орбита у Международной космической станции (МКС). Это макроскопический уровень, здесь работают законы классической физики (например, законы Ньютона).


А теперь перенесёмся на микроскопический уровень. Представьте себе ядро атома. Вокруг него, подобно спутникам, вращаются электроны – однако их не может быть сколь угодно много (скажем, у атома гелия – не больше двух). И орбиты у электронов будут уже не произвольные, а квантованные, «ступенчатые». Такие орбиты физики ещё называют «разрешёнными энергетическими уровнями». Электрон не может «плавно» перейти с одного разрешённого уровня на другой, он может только мгновенно «перепрыгнуть» с уровня на уровень. Только что был «там», и мгновенно оказался «тут». Он не может оказаться где-то между «там» и «тут». Он меняет местоположение мгновенно.


Удивительно? Удивительно! Но это ещё не всё. Дело в том, что, по законам квантовой физики, два одинаковых электрона не могут занимать один и тот же энергетический уровень. Никогда. Учёные называют это явление «запрет Паули» (почему этот «запрет» действует, они пока объяснить не могут). Больше всего этот «запрет» напоминает шахматную доску, которую мы приводили в качестве примера квантовой системы, – если на клетке доски стоит пешка, другую пешку на эту клетку уже не поставить. В точности то же самое происходит с электронами!

Решение задачи

Каким же образом – спросите вы – квантовая физика позволяет объяснять такие необычные явления, как нарушение закона Шарля внутри Сириуса Б? А вот каким.

Представьте себе городской парк, в котором есть танцевальная площадка. На улице гуляет много людей, они заходят на танцплощадку потанцевать. Пусть количество людей на улице обозначает давление, а количество людей на дискотеке – температуру. На танцплощадку может зайти огромное количество народу, – чем больше людей гуляет в парке, тем больше людей танцует на танцплощадке, то есть чем выше давление, тем выше температура. Так работают законы классической физики – в том числе закон Шарля. Такое вещество учёные называют «идеальным газом».


Люди на танцплощадке – «идеальный газ»

Однако на микроскопическом уровне законы классической физики не работают. Там начинают действовать квантовые законы, и это коренным образом меняет ситуацию.

Представим себе, что на месте танцплощадки в парке открыли кафе. В чём разница? Да в том, что в кафе, в отличие от дискотеки, «сколько угодно» людей не войдёт. Как только будут заняты все места за столиками, охрана прекратит пропускать людей внутрь. И пока кто-то из гостей не освободит столик, охрана никого не впустит! В парке гуляет всё больше и больше народу – а в кафе сколько людей было, столько и осталось. Получается, давление увеличивается, а температура «стоит на месте».


Люди в кафе – «квантовый газ»

Внутри Сириуса Б, само собой, никаких людей, танцплощадок и кафе нет. Но принцип остаётся всё тот же: электроны заполняют все разрешенные энергетические уровни (как посетители – столики в кафе), и дальше никого «пустить» уже не могут – в точности согласно запрету Паули. В итоге внутри звезды получается невообразимо огромное давление, а вот температура при этом – высокая, но для звёзд вполне себе обыкновенная. Такое вещество в физике называется «вырожденным квантовым газом».

Продолжим?..

Аномально высокая плотность белых карликов – далеко не единственное явление в физике, требующее использования квантовых законов. Если эта тема вас заинтересовала, в следующих номерах «Лучика» мы можем поговорить и о других, не менее интересных, квантовых явлениях. Пишите! А пока давайте запомним главное:

1. В нашем с вами мире (Вселенной) на макроскопическом (т. е. «большом») уровне действуют законы классической физики. Они описывают свойства обычных жидкостей и газов, движения звёзд и планет и многое другое. Именно эту физику вы изучаете (или будете изучать) в школе.

2. Однако на микроскопическом (то есть невероятно маленьком, в миллионы раз меньше самых мелких бактерий) уровне действуют совершенно другие законы – законы квантовой физики. Законы эти описываются очень сложными математическими формулами, и в школе их не изучают. Однако только квантовая физика позволяет относительно внятно объяснить строение таких удивительных космических объектов, как белые карлики (вроде Сириуса Б), нейтронные звёзды, чёрные дыры и так далее.