Содержание статьи

ЛИТИЙ (Lithium) Li, химический элемент 1-й (Ia) группы Периодической системы, относится к щелочным элементам. Атомный номер 3, относительная атомная масса 6,941. Состоит из двух стабильных изотопов 6 Li (7,52%) и 7 Li (92,48%). Искусственным путем получены еще два изотопа лития: у 8 Li период полураспада равен 0,841 с, а у 9 Li 0,168 с.

Степень окисления +1.

Литий был открыт в 1817 шведским химиком и минералогом Августом Арфведсоном (Arfvedson August) (1792–1841), когда он работал в качестве ассистента в лаборатории Йёнса Якоба Берцелиуса . На основании химического анализа петалита (LiAlSi 4 O 10) Арфведсон предположил, что в этом слоистом силикатном минерале есть некий щелочной элемент. Он отметил, что его соединения похожи на соединения натрия и калия, однако карбонат и гидроксид менее растворимы в воде. Арфведсон предложил для нового элемента название литий (от греческого liqoz – камень), указывающее на его происхождение. Он показал также, что этот элемент содержится в сподумене (силикатный пироксен) LiAlSi 2 O 6 и в лепидолите (слюда), который имеет примерный состав K 2 Li 3 Al 4 Si 7 O 21 (OH,F) 3 .

В 1818 английский химик и физик Гемфри Дэви выделил металлический литий электролизом расплавленного гидроксида лития.

Распространение лития в природе и его промышленное извлечение.

Содержание лития в кристаллических горных породах составляет 1,8·10 –3 % по массе, что косвенно отражает относительное малую распространенность элемента во Вселенной. На Земле он имеет почти такую же распространенность как галлий (1,9·10 –3 %) и ниобий (2,0·10 –3 %). Промышленные месторождения минералов лития есть на всех континентах. Наиболее важным минералом является сподумен, большие месторождения которого имеются в США, Канаде, Бразилии, Аргентине, странах СНГ, Испании, Швеции, Китае, Австралии, Зимбабве и Конго.

Почти всю мировую добычу минералов лития контролируют три главных компании – Sons of Gwalia (Австралия), Tanco (Канада) и Bikita Minerals (Зимбабве). Добыча минералов лития за период 1994–2000 увеличилась с 6300 до 11 900 т. в год. При этом 50% мировых мощностей по добыче сподумена, лепидолита и других литиевых минералов в последние годы простаивает. Таким образом, есть необходимые резервы для наращивания объемов выпуска литиевой продукции и дефицит лития потребителям не грозит.

Для получения нужных соединений лития сподумен нагревают до ~1100° С, а затем промывают серной кислотой при 250° С и выщелачивают образовавшийся сульфат лития водой. Действием карбоната натрия или хлороводорода его переводят в карбонат или хлорид, соответственно. Другим способом хлорид может быть получен прокаливанием промытой руды с известняком (карбонатом кальция) при 1000° С с последующим выщелачиванием водой в виде гидроксида лития и действием хлороводорода. В США также широко используется добыча соединений лития из природных рассолов.

Потребление минералов лития распределяется следующим образом: 25% используют заводы по производству огнеупорных изделий, 20% идет в производство специальных сортов стекол, столько же – на изготовление керамических изделий и глазурей, 12% потребляет собственно химическая промышленность, 10% – металлургическая, 5% литиевых минералов используется в производстве стекловолокна и 8% идет на нужды других отраслей. К областям специального применения относится растущий рынок сегнетоэлектриков, таких как танталат лития, для модулирования лазерных лучей. Предполагается, что в будущем будет резко расти спрос на металл и его соли в производстве литиевых батарей, используемых в мобильных телефонах и переносных компьютерах (в 1990-х темпы роста составляли 20–30% в год). В то же время будет падать потребление карбоната лития в алюминиевой промышленности, где новые технологии вообще не предусматривают использование этой соли.

Характеристика простого вещества и промышленное получение металлического лития.

Литий – серебристо-белый металл, мягкий и пластичный, тверже натрия, но мягче свинца. Его можно обрабатывать прессованием и прокаткой.

При комнатной температуре металлический литий имеет кубическую объемноцентрированную решетку (координационное число 8), которая при холодной обработке переходит в кубическую плотноупакованную решетку, где каждый атом, имеющий двойную кубооктаэдрическую координацию, окружен 12 другими. Ниже 78 К устойчивой кристаллической формой является гексагональная плотноупакованная структура, в которой каждый атом лития имеет 12 ближайших соседей, расположенных в вершинах кубооктаэдра.

Из всех щелочных металлов литий характеризуется самыми высокими температурами плавления и кипения (180,54 и 1340° С, соответственно), у него самая низкая плотность при комнатной температуре среди всех металлов (0,533 г/см 3).

В 1818 немецкий химик Леопольд Гмелин (Gmelin Leopold) (1788–1853) установил, что соли лития окрашивают бесцветное пламя в карминово-красный цвет.

Маленькие размеры атома лития приводят к появлению особых свойств металла. Например, он смешивается с натрием только ниже 380° С и не смешивается с расплавленными калием, рубидием и цезием, в то время как другие пары щелочных металлов смешиваются друг с другом в любых соотношениях.

В целом, литий менее реакционноспособен, чем его аналоги. В то же время он намного легче других щелочных металлов реагирует с азотом, углеродом, кремнием и этим напоминает магний. Литий легко вступает в прямую реакцию с азотом с образованием нитрида Li 3 N (ни один другой щелочной металл не обладает этим свойством). Эта реакция, хотя и медленно, идет уже при комнатной температуре, а при 250° C ход ее значительно ускоряется. При сжигании литий образует оксид Li 2 O (с примесью пероксида Li 2 O 2),

С водой литий реагирует с образованием гидроксида и выделением водорода. Литий растворяется в жидком аммиаке, образуя синий раствор с металлической проводимостью. Если сравнить молярные отношения, то он почти на 50% более растворим, чем натрий (15,66 и 10,93 моль на килограмм NH 3 , соответственно). В таком растворе литий медленно реагирует с аммиаком с выделением водорода и образованием амида LiNH 2 .

Потенциал восстановления для лития (–3,045 В) на первый взгляд кажется аномальным, так как он ниже, чем у других щелочных элементов. Это связано с тем, что катиону лития, имеющему наименьший радиус, соответствует максимальная энергия гидратации, что делает образование гидратированного катиона энергетически более выгодным по сравнению с другими щелочными металлами.

В значительных количествах металлический литий первыми выделили в 1855 (независимо друг от друга) немецкий химик Роберт Бунзен и англичанин О.Матиссен. Как и Дэви, они получали литий электролизом, только электролитом в их опытах служил расплав хлорида лития. Первое промышленное производство лития было налажено в Германии в 1923. Металлический литий и сейчас получают электролизом расплавленной смеси 55% хлорида лития и 45% хлорида калия при ~450° С. Выделяющийся на аноде хлор – ценный побочный продукт.

Для получения лития иногда применяют и восстановление другими элементами, образующими устойчивые оксиды:

2Li 2 O + Si = SiO 2 + 4Li

Сегодня в мире производится более 1000 т лития в год.

Металлический литий был впервые использован в коммерческих целях в 1920-е в виде сплава со свинцом для изготовления подшипников. Сейчас он применяется в производстве высокопрочных легких алюминиевых сплавов для строительства самолетов. С магнием литий образует чрезвычайно легкие сплавы, используемые для изготовления бронированных пластин и элементов космических объектов. Например, сплав, содержащий 14% лития, 1% алюминия и 85% магния, имеет плотность 1,35 г см –3 .

Литий стал эффективным средством для удаления из расплавленных металлов растворенных в них газов. Небольшими добавками лития легируют чугун, бронзы, монель-металл (сплав, выплавляемый из медно-никелевых руд), а также сплавы на основе магния, алюминия, цинка, свинца и некоторых других металлов.

Мелкодисперсный элементарный литий намного ускоряет реакцию полимеризации изопрена. Расплавленный металлический литий-7, имеющий малое сечение захвата тепловых нейтронов, используется в качестве теплоносителя в ядерных реакторах.

В будущем, возможно, перспективными источниками электроэнергии станут системы из батарей Li/FeS x . Эти батареи похожи на обычные свинцовые кислотные батареи наличием твердых электродов (отрицательный из сплава Li/Si, положительный из FeS x ) и жидкого электролита (расплав LiCl/KCl при 400° С).

Соединения лития.

Литий большее сходен с магнием, чем со своими соседями по группе. Эта так называемая диагональная периодичность является следствием близости ионных радиусов элементов: R(Li +) 76 пм, R(Mg 2+) 72 пм; для сравнения R(Na +) 102 пм. Арфведсон первым отметил при открытии лития как нового элемента, что его гидроксид и карбонат значительно менее растворимы, чем соответствующие соединения натрия и калия, и что карбонат (подобно карбонату магния) легче разлагается при нагревании. Подобным образом, фторид лития (как и фторид магния) гораздо менее растворим в воде, чем фториды других щелочных элементов. Это связано с высокой энергией кристаллической решетки, образованной катионами и анионами малых размеров. Напротив, соли лития с большими неполяризуемыми анионами, такими как перхлорат-ион, значительно более растворимы, чем соли других щелочных элементов, вероятно, из-за высокой энергии сольватации катиона лития. По той же причинам безводные соли очень гигроскопичны.

Соли лития склонны к образованию гидратов, обычно тригидратов, например LiX·3H 2 O (X = Cl, Br, I, ClO 3 , ClO 4 , MnO 4 , NO 3 , BF 4 и т.д.). В большинстве этих соединений литий координирует шесть молекул Н 2 О, образуя цепочки из октаэдров с общими гранями. Сульфат лития, в отличие от сульфатов других щелочных элементов, не образует квасцы, так как гидратированный катион лития слишком мал, чтобы занять соответствующее место в структуре квасцов.

Оксид лития Li 2 O – единственный среди оксидов щелочных элементов, образующихся в качестве основного продукта при нагревании металла выше 200° С (на воздухе). Его получают и прокаливанием нитрата при 600° С (в присутствии меди):

4LiNO 3 = 2Li 2 O + 4NO 2 + O 2

Он образуется при нагревании нитрита лития выше 190° С или карбоната лития выше 700° С в токе высушенного водорода.

Оксид лития добавляют к смесям реагентов при твердофазном синтезе двойных и тройных оксидов для понижения температуры процесса. Он является компонентом рентгенопрозрачных стекол и стекол с небольшим температурным коэффициентом линейного расширения. Оксид лития добавляют в глазури и эмали. Он повышает их химическую и термическую стойкость и прочность, снижает вязкость расплавов.

Пероксид лития Li 2 O 2 в промышленности получают реакцией LiOH·H 2 O с пероксидом водорода с последующей дегидратацией гидропероксида острожным нагреванием при пониженном давлении. Это белое кристаллическое вещество разлагается до оксида лития при нагревании выше 195° С. Его используют в космических аппаратах для получения кислорода:

2Li 2 O 2 + 2CO 2 = 2Li 2 CO 3 +O 2

Гидроксид лития LiOH плавится при 470° С, при более высокой температуре испаряется и частично диссоциирует на оксид лития и воду:

2LiOH = Li 2 O + H 2 O

В парах при 820–870° С содержится 90% димера (LiOH) 2 .

Растворимость гидроксида лития в воде составляет 12,48 г на 100 г при 25° С. При выпаривании водных растворов гидроксида лития образуется моногидрат, который легко теряет воду при нагревании в инертной атмосфере или при пониженном давлении.

Гидроксид лития используется в производстве смазок на основе стеарата лития и для поглощения диоксида углерода в закрытых помещениях, например, в космических кораблях и на подводных лодках. Его преимущество по сравнению с другими щелочами – малая атомная масса. Добавка гидроксида лития к электролиту щелочных аккумуляторов примерно на одну пятую увеличивает их емкость и в 2–3 раза – срок службы.

Карбонат лития Li 2 CO 3 – наиболее промышленно важное соединение лития и исходное вещество для получения большинства других его соединений. В отличие от других солей лития, Li 2 CO 3 является безводным. Он мало растворим в воде, причем растворимость карбоната лития понижается с повышением температуры. При 25° С она равна 1,27 г на 100 г воды, а при 75° С – 0,85 г на 100 г воды.

Термическая устойчивость карбоната лития существенно ниже, чем аналогичных соединений других щелочных элементов. Выше температуры плавления (732° С) он разлагается:

Li 2 CO 3 = Li 2 O + CO 2

Карбонат лития используется в качестве флюса при нанесении фарфоровой эмали и в производстве специальных закаленных стекол, при этом ионы лития замещают более крупные ионы натрия. Соединение лития либо вводят в состав стеклянной шихты, либо натриевое стекло обрабатывают расплавом солей, содержащих ионы лития, чтобы вызвать обмен катионов на его поверхности.

Еще одна область применения карбоната лития – в производстве алюминия. Он на 7–10% увеличивает качество продукции за счет снижение температуры плавления электролита и увеличения силы тока. Кроме того, на 25–50% уменьшается нежелательное выделение фтора.

В 1949 было обнаружено, что небольшие (1–2 г) дозы карбоната лития при приеме через рот приводят к эффективному воздействию на маниакально-депрессивные психозы. Механизм воздействия еще не совсем понятен, однако побочные явления пока не обнаружены. Такие дозы поддерживают концентрацию лития в крови около 1 ммоль л –1 , и его действие может быть связано с влиянием лития на баланс Na/K и (или) Mg/Ca.

Нитрат лития LiNO 3 гигроскопичен и хорошо растворим в воде (45,8 масс. % при 25° С, то есть 6,64 моль л –1). Из водных растворов кристаллизуется в виде тригидрата.

Нитрат лития используется в виде низкотемпературных расплавов в лабораторных термостатах. Например смесь LiNO 3:KNO 3 (1:1) плавится при 125° С. Кроме того, нитрат лития применяют в пиротехнических смесях.

Фторид лития LiF мало растворим в воде (1,33 г/л при 25° С). Его получают взаимодействием гидроксида лития или солей лития с фтороводородом, фторидом аммония, гидродифторидом аммония или их водными растворами.

Еще в прошлом веке это вещество начали применять в металлургии как компонент многих флюсов. Фторид лития обладает термолюминесцентными свойствами. Он используется в рентгеновской и g -дозиметрии. Кристаллы фтористого лития, прозрачные для ультракоротких волн длиной до 100 нм, применяют в производстве оптических приборов, кроме того, фторид лития является компонентом электролитов при получении алюминия и фтора. Он входит в состав эмалей, глазурей, керамики, люминофоров и лазерных материалов.

Для атомной техники важно моноизотопное соединение пития – 7 LiF, применяемое для растворения соединений урана и тория непосредственно в реакторах.

Хлорид лития LiCl хорошо растворим в воде (84,67 г на 100 г при 25° С) и многих органических растворителях. Большое сродство к воде служит основой для широкого применения рассолов хлорида (и бромида) лития в осушителях и воздушных кондиционерах.

Хлорид лития является сырьем для получения металлического лития. Другая область применения этого соединения – в качестве флюса при пайке алюминиевых частей автомобиля. Его используют и в производстве флотационных жидкостей, как катализатор органического синтеза. Хлорид лития служит средством против обледенения самолетов. Он является твердым электролитом в химических источниках тока для имплантированных кардиостимуляторов.

Гидрид лития LiH получают взаимодействием расплавленного лития с водородом при 630–730° С в сосуде из железа, не содержащего углерод. Он образует бесцветные кристаллы с кубической решеткой типа хлорида натрия. Гидрид лития имеет плотность 0,776 г/см 3 , температуру плавления 692° С (в инертной атмосфере). При электролизе в расплаве проводит электрический ток с выделением водорода на аноде. Под действием электромагнитного излучения в видимой, ультрафиолетовой или рентгеновской области окрашивается в голубой цвет благодаря образованию коллоидного раствора лития в гидриде лития.

Гидрид лития относительно устойчив в сухом воздухе, быстро гидролизуется парами воды. Реагирует с водой, кислотами и спиртами с выделением водорода. Из 1 кг гидрида лития можно получить 2,82 м 3 этого газа. Гидрид лития используется для получения водорода, которым наполняют метеорологические шары-зонды в полевых условиях. Кроме того, он служит восстановителем в органическом синтезе, а также для получения бороводородов, алюмогдидрида лития LiAlH 4 и других гидридных соединений.

Дейтерид лития-6 применяется в термоядерном оружии. Будучи твердым веществом, он позволяет хранить дейтерий при плюсовых температурах, кроме того, второй его компонент (литий-6) – это единственный промышленный источник получения трития:

6 3 Li + 1 0 n ® 3 1 H + 4 2 He

Стеарат лития Li(C 17 H 35 COO) легко образуется из гидроксида лития и животного или другого природного жира, применяется как загуститель и желирующий агент при превращении масел в консистентные смазки. Эти многоцелевые смазки сочетают высокую устойчивость к действию воды, хорошие свойства при низких температурах (–20° С) и отличную стабильность при высоких температурах (более 150° С). Они занимают почти половину общего рынка автомобильных смазок в США.

Комплексные соединения . Из всех щелочных элементов литий наиболее склонен к образованию комплексов, образует стабильный комплекс с ЭДТА (натриевой солью этилендиаминтетрауксусной кислоты). Устойчивыми являются комплексы лития с краун-эфирами.

Литиеорганические соединения легко получаются непосредственным взаимодействием лития с алкилгалогенидами (обычно используют хлориды) в петролейном эфире, циклогексане, бензоле или диэтиловом эфире:

2Li + RX ® LiR + LiX

Из-за высокой химической активности как реагентов, так и продуктов реакции нужно использовать инертную атмосферу, исключающую воздух и влагу. Выход продукта существенно увеличивается в присутствии 0,5–1% натрия в металлическом литии. Арильные производные лития получают из бутиллития (LiBu) и арилиодида:

LiBu + ArI ® LiAr + BuI

Наиболее удобный путь для получения винильных, аллильных и других ненасыщенных производных – реакция фениллития с тетравинилоловом:

4LiPh + Sn(CH=CH 2) 4 ® 4LiCH=CH 2 + SnPh 4

Если важнее выделить продукт реакции, чем использовать его в дальнейшем синтезе, используют реакцию между избытком лития и ртутьорганическим соединением:

2Li + HgR 2 ® 2LiR + Hg

Литиеорганические соединения термически неустойчивы, и большинство из них постепенно разлагается до гидрида лития и алкена при комнатной или более высокой температуре. Среди наиболее устойчивых соединений – бесцветные кристаллические LiСН 3 (разлагается выше 200° С) и LiС 4 Н 9 (разлагается в небольшой степени при выдерживании в течение нескольких дней при 100° С). Обычно алкильные производные лития имеют тетрамерное или гексамерное строение.

Металлоорганические соединения лития (в частности, LiСН 3 и LiС 4 Н 9) являются ценными реактивами. Последние десятилетия они все более используются в промышленном и лабораторном органическом синтезе. Ежегодное производство одного только LiС 4 Н 9 подскочило от нескольких килограммов до 1000 т. В большом количестве он применяется как катализатор полимеризации, алкилирующий агент и предшественник металлированных органических реагентов. Многие синтезы, подобные реакциям с участием реактивов Гриньяра, имеют явные преимущества по сравнению с ними по скорости реакции, отсутствию усложняющих процесс побочных реакций или удобству работы.

В реакциях литиеорганических соединений с алкилиодидами или, что более полезно, с карбонилами металлов образуются новые связи С–С. В последнем случае продуктами являются альдегиды или кетоны. Термическое разложение LiR приводит к удалению b -водородного атома с образованием олефина и LiH, этот процесс промышленно значим для получения алкенов с длинной концевой цепью. Арилпроизводные лития в неполярных растворителях дают карбоновые кислоты с диоксидом углерода и третичные спирты – с ароматическими кетонами. Литиеорганические соединения являются также ценными реагентами в синтезе других металлоорганических соединений путем обмена металл – галоген.

Наиболее ионными из металлоорганических соединений лития являются карбиды, образующиеся при взаимодействии лития с алкинами в жидком аммиаке. Самая крупная область промышленного применения LiHC 2 – производство витамина А. Он влияет на этинилирование метилвинилкетона, приводящего к образованию ключевого промежуточного карбинольного соединения.

Елена Савинкина

ЛИТИЙ, Li (от греческого lithos — камень * а. lithium; н. Lithium; ф. lithium; и. litio),- химический элемент I группы периодической системы Менделеева , атомный номер 3, атомная масса 6,941, относится к щелочным металлам. В природе встречаются 2 стабильных изотопа: 6 Li (7,42%) и 7 Li (92,58%). Открыт шведским учёным Ю. А. Арфведсоном в 1817 в минерале , металлический литий впервые получен в 1818 английским учёным Г. Дэви.

Физические свойства

Литий — серебристо-белый металл, кристаллизуется в кубической объёмноцентрированной решётке, а = 0,35098 нм. Ниже -195°С стабильна гексагональная модификация.

Литий — самый лёгкий металл. Плотность 539 кг/м 3 (20°С); t плавления 180,5°С; t кипения 1340°С, коэффициент теплопроводности 70,8 Вт/(м.К); удельная теплоёмкость 3,31.10 3 Дж/(кг.К); удельное электрическое сопротивление 9,29.10 -8 (Ом.м), температурный коэффициент электрического сопротивления 4,50.10 -3 К -1 (0-100°С); температурный коэффициент линейного расширения 5,6.10 -5 К -1 ; твердость по Moocy 0,6; модуль упругости 5 ГПа; предел прочности при растяжении 116 МПа; относительное удлинение 50-70%.

Химические свойства лития

Проявляет степень окисления +1. На воздухе покрывается плёнкой Li 3 N и Li 2 О, при нагревании горит голубым пламенем. Известен также пероксид Li 2 О 2 . С водой реагирует с образованием гидроксида LiOH и водорода . Литий, взаимодействуя с галогенами, водородом, серой и т. д., даёт соответственно , гидрид, и т, д. В специфических условиях могут быть получены различные фосфиды. Эти соединения и гидроксид очень реакционноспособны. Растворяясь в неорганических кислотах, литий даёт соли. Литий образует многочисленные литийорганические соединения. Известны твёрдые растворы лития с некоторыми металлами (Mg, Zn, Al), а со многими он образует интерметаллические соединения (например, LiAg, LiHg). Попадая в организм, литий вызывает слабость, головокружение, сонливость, потерю аппетита. Кларк лития в земной коре 3,2.10 -3 %. При дифференциации магматических расплавов литий накапливается в наиболее поздних продуктах — пегматитах . При выветривании литий захватывается глинами , его сравнительно мало в Мировом океане . Распределение лития в горных породах (% по массе): каменных метеориты 3.10 -4 , ультраосновные 5.10 -5 , основные 1,5.10 -3 , средние 2.10 -3 , кислые 4.10 -3 , карбонатные породы 5.10 -4 , глины 6,6.10 -3 , песчаники 5.10 -5 . Кларк лития в океанической воде 1,5.10 -5 . Установлено 28 минералов лития, среди них наиболее распространены сподумен , петалит, лепидолит , амблигонит . Близость ионных радиусов Li, Mg, Fe позволяет литию изоморфно входить в решётки железо-магнезиальных силикатов.

Литий

ЛИ́ТИЙ -я; м. [от греч. lithos - камень, минерал] Химический элемент (Li), мягкий, очень лёгкий щелочной металл серебристо-белого цвета (в природе в чистом виде не встречается).

Ли́тиевый, -ая, -ое.

ли́тий

(лат. Lithium), химический элемент I группы периодической системы, относится к щелочным металлам. Название от греч. líthos - камень (открыт в минерале петалите). Серебристо-белый, самый лёгкий из металлов; плотность 0,533 г/см 3 , t пл 180,5°C. Химически очень активен, окисляется при обычной температуре; реагирует с азотом, образуя нитрид Li 3 N. Минералы - сподумен, лепидолит и др. Изотоп Li - единственный промышленный источник для производства трития. Литий используют для раскисления, легирования и модифицирования сплавов (например, аэрона, склерона), как теплоноситель в ядерных реакторах, компонент сплавов на основе Mg и Al, анод в химических источниках тока; некоторые соединения лития входят в состав пластичных смазок, специальных стёкол, термостойкой керамики, используются в медицине.

ЛИТИЙ

ЛИ́ТИЙ (лат. Lithium), Li, химический элемент с атомным номером 3, атомная масса 6,941. Химический символ Li читается так же, как и название самого элемента.
Литий встречается в природе в виде двух стабильных нуклидов (см. НУКЛИД) 6 Li (7,52% по массе) и 7 Li (92,48%). В периодической системе Д. И. Менделеева литий расположен во втором периоде, группе IA и принадлежит к числу щелочных металлов (см. ЩЕЛОЧНЫЕ МЕТАЛЛЫ) . Конфигурация электронной оболочки нейтрального атома лития 1s 2 2s 1 . В соединениях литий всегда проявляет степень окисления +1.
Металлический радиус атома лития 0,152 нм, радиус иона Li + 0,078 нм. Энергии последовательной ионизации атома лития 5,39 и 75,6 эВ. Электроотрицательность по Полингу 0,98, самая большая у щелочных металлов.
В виде простого вещества литий - мягкий, пластичный, легкий, серебристый металл.
История открытия и получение
Литий был открыт в 1817 году шведским химиком и минералогом А. Арфведсоном (см. АРФВЕДСОН Юхан Август) сначала в минерале петалите (Li,Na), а затем в сподумене (см. СПОДУМЕН) LiAl и в лепидолите (см. ЛЕПИДОЛИТ) KLi 1.5 Al 1.5 (F,OH) 2 . Свое название получил из-за того, что был обнаружен в «камнях» (греч. Litos - камень). Характерное для соединений лития красное окрашивание пламени впервые наблюдал немецкий химик Х.Г.Гмелин в 1818 году. В этом же году английский химик Г. Дэви (см. ДЭВИ Гемфри) электролизом расплава гидроксида лития получил кусочек металла. Получить свободный металл в достаточных количествах удалось впервые только в 1855 году путем электролиза расплавленного хлорида:
2LiCl = 2Li + Cl 2
В настоящее время для получения металлического лития его природные минералы или разлагают серной кислотой (кислотный способ), или спекают с CaO или CaCO 3 (щелочной способ), или обрабатывают K 2 SO 4 (солевой способ), а затем выщелачивают водой. В любом случае из полученного раствора выделяют плохо растворимый карбонат лития Li 2 CO 3 , который затем переводят в хлорид LiCl. Электролиз расплава хлорида лития проводят в смеси с KCl или BaCl 2 (эти соли служат для понижения температуры плавления смеси). В дальнейшем полученный литий очищают методом вакуумной дистилляции.
Нахождение в природе
Литий довольно широко распространен в земной коре, его содержание в ней составляет 6,5·10 –3 % по массе. Как уже упоминалось, основные минералы, содержащие литий, - это петалит (содержит 3,5-4,9 % Li 2 O), сподумен (6-7 % Li 2 O), лепидолит (4-6 % Li 2, O) и амблигонит (см. АМБЛИГОНИТ) LiAl - 8-10 % Li 2, O. В виде примеси литий содержится в ряде породообразующих минералов, а также присутствует в рапе некоторых озер и в минерализованных водах. В морской воде содержится около 2·10 -5 % лития.
Физические и химические свойства
Из металлов литий самый легкий, его плотность 0,534 г/см 3 . Температура плавления 180,5°C, температура кипения 1326°C. При температурах от –193°C до температуры плавления устойчива кубическая объемно центрированная модификация лития с параметром элементарной ячейки а=0,350 нм.
Из-за небольшого радиуса и маленького ионного заряда литий по своим свойствам больше всего напоминает не другие щелочные металлы, а элемент группы IIA магний (см. МАГНИЙ) . Литий химически очень активен. Он способен взаимодействовать с кислородом и азотом воздуха при обычных условиях, поэтому на воздухе он быстро окисляется с образованием темного налета продуктов взаимодействия:
4Li + O 2 = 2Li 2 O,
6Li + N 2 = 2Li 3 N
При контактах с галогенами литий самовоспламеняется при обычных условиях. Подобно магнию, нагретый литий способен гореть в CO 2:
4Li + CO 2 = C + 2Li 2 O
Стандартный электродный потенциал Li/Li + имеет наибольшее отрицательное значение (E° 298 = –3,05 B) по сравнению со стандартными электродными потенциалами других металлов. Это обусловлено большой энергией гидратации маленького иона Li + , что значительно смещает равновесие в сторону ионизации металла:
Li твердый Li + раствор + e
Для слабо сольватирующих растворителей значение электродного потенциала лития соответствует его меньшей химической активности в ряду щелочных металлов.
Соединения лития - соли - как правило, бесцветные кристаллические вещества. По химическому поведению соли лития несколько напоминают аналогичные соединения магния или кальция. Плохо растворимы в воде фторид LiF, карбонат Li 2 CO 3 , фосфат Li 2 PO 4 , хорошо растворим хлорат лития LiClO 3 - это, пожалуй, одно из самых хорошо растворимых соединения в неорганической химии (при 18°C в 100 г воды растворяется 313,5 г LiClO 3).
Оксид лития Li 2 O - белое твердое вещество - представляет собой типичный щелочной оксид. Li 2 O активно реагирует с водой с образованием гидроксида лития LiOH.
Этот гидроксид получают электролизом водных растворов LiCl:
2LiCl + 2H 2 O = 2LiOH + Cl 2 ­ + H 2 ­
LiOH - сильное основание, но оно отличается по свойствам от гидроксидов других щелочных металлов. Гидроксид лития уступает им в растворимости. При прокаливании гидроксид лития теряет воду:
2LiOH = Li 2 O + H 2 O­
Большое значение в синтезе органических и неорганических соединений имеет гидрид лития LiH, который образуется при взаимодействии расплавленного лития с водородом:
2Li + H 2 = 2LiH
LiH - ионное соединение, строение кристаллической решетки которого похоже на строение кристаллической решетки хлорида натрия NaCl. Гидрид лития можно использовать в качестве источника водорода для наполнения аэростатов и спасательного снаряжения (надувных лодок и т.п.), так как при его гидролизе образуется большое количество водорода (1 кг LiH дает 2,8 м 3 H 2):
LiH + H 2 O = LiOH + H 2 ­
Он также находит применение при синтезе различных гидридов, например, борогидрида лития:
BCl 3 + 4LiH = Li + 3LiCl.
Литий образует соединения с частично ковалентной связью Li-C, т. е. литийорганические соединения. Например, при реакции иодбензола C 6 H 5 I с литием в органических растворителях протекает реакция:
C 6 H 5 I + 2Li = C 6 H 5 Li + LiI.
Литийорганические соединения широко используются в органическом синтезе и в качестве катализаторов.
Применение
Из лития изготовляют аноды химических источников тока, работающих на основе неводных твердых электролитов. Жидкий литий может служить теплоносителем в ядерных реакторах. С использованием нуклида 6 Li получают радиоактивный тритий 3 1 H (Т):
6 3 Li + 1 0 n = 3 1 H + 4 2 He.
Литий и его соединения широко применяют в силикатной промышленности для изготовления специальных сортов стекла и покрытия фарфоровых изделий, в черной и цветной металлургии (для раскисления, повышения пластичности и прочности сплавов), для получения пластичных смазок. Соединения лития используются в текстильной промышленности (отбеливание тканей), пищевой (консервирование) и фармацевтической (изготовление косметики).
Биологическая роль
Литий в незначительных количествах присутствует в живых организмах, но по-видимому, не выполняет никаких биологических функций. Установлено его стимулирующее действие на некоторые процессы в растениях, способность повышать их устойчивость к заболеваниям.
В организме среднего человека (масса 70 кг) содержится около 0,7 мг лития. Токсическая доза 90-200 мг.
Особенности обращения с литием
Как и другие щелочные металлы, металлический литий способен вызывать ожоги кожи и слизистых, особенно в присутствии влаги. Поэтому работать с ним можно только в защитной одежде и очках. Хранят литий в герметичной таре под слоем минерального масла. Отходы лития нельзя выбрасывать в мусор, для уничтожения их следует обработать этиловым спиртом:
2С 2 Н 5 ОН + 2Li = 2С 2 Н 5 ОLi + Н 2
Образовавшийся этилат лития затем разлагают водой до спирта и гидроксида лития LiOH.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "литий" в других словарях:

    - (лат. lithium, от греч. lithos камень). Металл белого цвета, открытый в 1817 г. в петалите; все соли его растворимы в воде. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ЛИТИЙ белый металл, самый легкий из всех,… … Словарь иностранных слов русского языка

    - (Lithium), Li, химический элемент I группы периодической системы, атомный номер 3, атомная масса 6,941; относится к щелочным металлам, tпл 180,54шC. Литий используют для изготовления анодов для химических источников тока, в производстве меди,… … Современная энциклопедия

    Литий - (Lithium), Li, химический элемент I группы периодической системы, атомный номер 3, атомная масса 6,941; относится к щелочным металлам, tпл 180,54°C. Литий используют для изготовления анодов для химических источников тока, в производстве меди,… … Иллюстрированный энциклопедический словарь

    - (лат. Lithium) Li, химический элемент I группы периодической системы, атомный номер 3, атомная масса 6,941, относится к щелочным металлам. Название от греч. lithos камень (открыт в минерале петалите). Серибристо белый, самый легкий из металлов;… … Большой Энциклопедический словарь

    Li (от греч. lithos камень * a. lithium; н. Lithium; ф. lithium; и. litio), хим. элемент I группы периодич. системы Менделеева, ат. н. 3, ат. м. 6,941, относится к щелочным металлам. B природе встречаются 2 стабильных изотопа: 6Li (7,42%) … Геологическая энциклопедия

    ЛИТИЙ - ЛИТИЙ, хим. элемент, символ Li, порядков. номер 3, серебристо белый металл, ат. в. 6,940 (изотопы 6 и 7), t° пл. 186°; относится к группе щелочн. металлов, имеет наименьший по сравн. с др. металлами уд. в. (0,59). Открыт Арфедзоном… … Большая медицинская энциклопедия

    ЛИТИЙ - хим. элемент, символ Li (лат. Lithium), ат. н. 3, ат. м. 6,941; серебристо белый, самый лёгкий металл, принадлежит к щелочным металлам, плотность 534 кг/м3, tпл = 180,5°С; легко режется ножом. Л. химически очень активен, взаимодействует с водой и … Большая политехническая энциклопедия

    - (символ Li), редкий серебряного цвета элемент, один из ЩЕЛОЧНЫХ МЕТАЛЛОВ, впервые был обнаружен в 1817 г. Содержится в таких рудах, как лепидолит и сподумен. По химическим свойствам близок к натрию. Самый легкий из всех металлов, используется в… … Научно-технический энциклопедический словарь


Элемент №3, названный литием (от греческого λιτοσ – камень), открыт в 1817 г.

Шведский химик И.А. Арфведсон, ученик знаменитого Берцелиуса, анализировал минерал, найденный в железном руднике Уто. Он быстро установил, что этот минерал – типичный алюмосиликат, и выяснил, сколько в нем кремния, алюминия и кислорода – на долю этих трех распространеннейших элементов приходилось 96% веса минерала.

Теперь оставалось выяснить химическую природу веществ, составляющих оставшиеся 4%. Эти вещества, будучи отделенными от Si, Al, и O 2 и растворенными в воде, придавали раствору щелочные свойства. На этом основании Арфведсон предположил, что в минерале есть некий щелочной металл. Одна из солей этого металла растворялась в воде в шесть раз лучше, чем аналогичные соли калия и натрия. А поскольку в то время были известны лишь два щелочных металла, Арфведсон решил, что открыл новый элемент, подобный натрию и калию.

С виду минерал, в котором нашли новый элемент, был камень как камень, и потому Берцелиус предложил Арфведсону назвать новый элемент литием. Тот, видимо, не стал спорить, ибо это название сохранилось до наших дней. В большинстве европейских языков, как и в латыни, элемент №3 называется Lithium.

На этом история элемента №3 не заканчивается. Это очень своеобразный элемент, и не только потому, что литий – первый среди металлов по легкости и удельной теплоемкости, а также по положению в ряду напряжений металлов. Говорить о том, что история лития продолжается, можно хотя бы потому, что некоторые соединения лития, да и сам металл в последнее время приобрели исключительную важность для судеб всего мира.

Поэтому слово «история» в подзаголовках этой статьи нам кажется оправданным.

Древнейшая история

Когда-то давным-давно, в доисторические времена, происходил синтез элементов Вселенной. Несколько позже, но тоже в неопределенно далеком прошлом шли процессы формирования нашей планеты. На этой стадии литий проник более чем в 150 минералов, из них около 30 стали собственными минералами лития. Промышленное значение приобрели только пять: сподумен LiAl , лепидолит Kli 1,5 Al 1,5 (F, OH) 2 , петалит – минерал, в котором литий обнаружен впервые, LiAl , амблигонит LiAl (F, OH) и циннвальдит KLi (Fe, Mg) Al· (F, OH) 2 .

Географически промышленные запасы элемента №3 распределились довольно равномерно: промышленные месторождения минералов лития есть на всех континентах. Важнейшие из них находятся в Канаде, США, СССР, Испании, Швеции, Бразилии, Австралии, а также в странах Южной Африки.

Древняя история

Слово «древняя» здесь употребляется весьма условно – речь пойдет о временах, не столь отдаленных.

Человечество знакомо с литием чуть больше полутора веков, и этот раздел нашего рассказа охватит годы с 1817 по 1920. Это время познания лития как химического индивидуума, время получения и исследования его многих соединений и не очень широкого применения некоторых из них.

Вскоре после открытия Арфведсона новым элементом заинтересовались многие химики. В 1818 г. немецкий химик Л. Гмелин установил, что соли лития окрашивают бесцветное пламя в карминово-красный цвет. Вскоре сам Арфведсон обнаружил литий в сподумене, позже ставшем важнейшим минералом элемента №3, и в лепидолите. В 1825 г. Йенс Якоб Берцелиус нашел литий в водах германских минеральных источников. Вскоре выяснилось, что этот элемент есть и в морской воде (7·10 6 %).

Металлический литий впервые получил выдающийся английский ученый Хэмфри Дэви в 1818 г. Тогда и выяснилось, что литий очень легок, почти вдвое легче воды, и что он обладает ярким металлическим блеском. Но этот блеск серебристо-белого лития можно увидеть только в том случае, если металл получают в вакууме: как и все щелочные металлы, литий быстро окисляется кислородом воздуха и превращается в окись – бесцветные кристаллы кубической формы. Li 2 O легко, но менее энергично, чем окислы других щелочных металлов, соединяется с водой, превращаясь в щелочь – LiOH. И эти кристаллы бесцветны. В воде гидроокись лития растворяется хуже, чем гидроокиси калия и натрия. Как бесцветные кристаллы, выглядят и литиевые соли галогеноводородных кислот.

Иодид, бромид и хлорид лития весьма гигроскопичны, расплываются на воздухе и очень хорошо растворяются в воде. Фторид лития, в отличие от них, в воде растворяется очень слабо и практически совсем не растворяется в органических растворителях. Еще в прошлом веке это вещество начали применять в металлургии как компонент многих флюсов.

В значительных количествах металлический литий первыми получили в 1855 г. (независимо друг от друга) немецкий химик Р. Бунзен и англичанин О. Матиссен. Как и Дэви, они получали литий электролизом, только электролитом в их опытах служил расплав не гидроокиси, а хлорида лития. Этот способ до сих пор остается главным промышленным способом получения элемента №3. Правда, теперь в электролитическую ванну помещают смесь LiCl и KCl и подбирают такие характеристики тока, чтобы на катоде осаждался только литий. Выделяющийся на аноде хлор – ценный побочный продукт.

Есть и другие способы получения металлического лития, но всерьез конкурировать с электролитическим они пока не могут.

Еще в XIX в. были получены соединения лития с почти всеми элементами периодической системы и с некоторыми органическими веществами. Но практическое применение нашли лишь немногие из них. В 1912...1913 гг. мировое производство лития и его соединений не превышало 40...50 т.

В 1919 г. вышла брошюра В.С. Сырокомского «Применение редких элементов в промышленности». Есть в ней, в частности, и такие строки: «Главнейшее применение литий находит в данный момент в медицине, где углекислый и салицилово-кислый литий служат средством для растворения мочевой кислоты, выделяющейся в организме человека при подагре и некоторых других болезнях...»

История средних веков

«Средние века» истории лития – это всего три десятилетия, 20, 30, 40-е годы нашего века. В эти годы литий и его соединения пришли во многие отрасли промышленности, в первую очередь в металлургию, в органический синтез, в производство силикатов и аккумуляторов.

Литий имеет сродство к кислороду, водороду, азоту. Последнее особенно важно, так как ни один элемент не реагирует с азотом так активно, как литий. Эта реакция, хотя и медленно, идет уже при комнатной температуре, а при 250°C ход ее значительно ускоряется. Литий стал эффективным средством для удаления из расплавленных металлов растворенных в них газов. Небольшими добавками лития легируют чугун, бронзы, монель-металл (монель-металл – «природный» сплав, выплавляемый из медно-никелевых руд), а также сплавы на основе магния, алюминия, цинка, свинца и некоторых других металлов.

Установлено, что литий в принципе улучшает и свойства сталей – уменьшает размеры «зерен», повышает прочность, но трудности введения этой добавки (литий практически нерастворим в железе и к тому же он закипает при температуре 1317°C) помешали широкому внедрению лития в производство легированных сталей.

Соединения лития нужны и в силикатной промышленности. Они делают стеклянную массу более вязкой, что упрощает технологию, и, кроме того, придают стеклу большую прочность и сопротивляемость атмосферной коррозии. Такие стекла, в отличие от обычных, частично пропускают ультрафиолетовые лучи; поэтому их применяют в телевизионной технике. А в производстве оптических приборов довольно широко стали использовать кристаллы фтористого лития, прозрачные для ультракоротких волн длиной до 1000 А.

В химической промышленности стали применять металлический литий и литийорганические соединения. В частности, мелкодисперсный элементарный литий намного ускоряет реакцию полимеризации изопрена, а бутил литий – дивинила.

По химическим свойствам литий напоминает не только (и не столько) другие щелочные металлы, но и магний. Литийорганические соединения применяют там же, где и магнийорганические (в реакциях Гриньяра), но соединения элемента №3 – более активные реагенты, чем соответствующие гриньяровские реактивы.

В годы второй мировой войны стало стратегическим материалом одно соединение лития, известное еще в прошлом веке. Речь идет о гидриде лития – бесцветных кристаллах, приобретающих при хранении голубоватую окраску.

Из всех гидридов щелочных и щелочноземельных металлов гидрид лития – самое устойчивое соединение. Однако, как и прочие гидриды, LiH бурно реагирует с водой. При этом образуются гидроокись лития и газообразный водород. Это соединение стало служить легким (оно действительно очень легкое – плотность 0,776) и портативным источником водорода – для заполнения аэростатов и спасательного снаряжения при авариях самолетов и судов в открытом море. Из килограмма гидрида лития получается 2,8 м 3 водорода...

Примерно в то же время стал быстро расти спрос еще на одно соединение элемента №3 – его гидроокись. Как оказалось, добавка этого вещества к электролиту щелочных аккумуляторов примерно на одну пятую увеличивает их емкость и в 2...3 раза – срок службы.

К началу второй мировой войны производство литиевых концентратов в капиталистических странах достигло 3 тыс. т. Для такого рассеянного элемента, как литий, это много. Но та же цифра покажется до смешного малой, если сравнить ее с данными 1957 г. – 250 тыс. т. (без СССР). Этот бурный рост объясняется прежде всего тем, что в 50-е годы литий стал «атомным» металлом и, если можно так выразиться, разносторонне атомным.

Новая история

К этому времени уже во многих странах работали ядерные реакторы или, как их тогда называли, атомные котлы. Конструкторов этих котлов по многим причинам не устраивала вода, которую приходилось применять в качестве теплоносителя.

Появились реакторы, в которых избыточное тепло отводилось расплавленными металлами, в первую очередь натрием и калием.

Но по сравнению с этими металлами у лития много преимуществ. Во-первых, он легче. Во-вторых, у него больше теплоемкость. В-третьих, меньше вязкость. В-четвертых, диапазон жидкого состояния – разница между температурами плавления и кипения – у лития значительно шире. Наконец, в-пятых, коррозионная активность лития намного меньше, чем натрия и калия.

Одних этих преимуществ было бы вполне достаточно для того, чтобы сделать литий «атомным» элементом. Но оказалось, что ему суждено стать одним из незаменимых участников реакции термоядерного синтеза.

Пожалуй, строительство завода по разделению изотопов лития – единственный в своем роде факт из истории американского предпринимательства. Контракт на строительство этого завода заключил банкрот, и, тем не менее, строительство велось буквально в бешеном темпе. Банкротом был не кто иной, как Комиссия по атомной энергии. Средства, отпущенные на создание «сверх бомбы», были израсходованы полностью, но ничего реального у физиков не получалось. Было это в июле 1951 г. А о том, что при реакции соединения ядер тяжелых изотопов водорода – дейтерия и трития – должна высвободиться энергия, во много раз большая, чем при распаде ядер урана, знали намного раньше. Но на пути этого превращения лежало одно неразрешимое, казалось, противоречие.

Для того чтобы смогли слиться ядра дейтерия и трития, нужна температура порядка 50 млн градусов. Но для того чтобы реакция пошла, нужно еще, чтобы атомы столкнулись. Вероятность такого столкновения (и последующего слияния) тем больше, чем плотнее «упакованы» атомы в веществе. Расчеты показали, что это возможно только в том случае, если вещество находится хотя бы в жидком состоянии. А изотопы водорода становятся жидкостями лишь при температурах, близких к абсолютному нулю.

Итак, с одной стороны, необходимы сверхвысокие температуры, а с другой – сверхнизкие. И это – в одном и том же веществе, в одном и том же физическом теле!

Водородная бомба стала возможной только благодаря разновидности гидрида лития – дейтериду лития- 6. Это соединение тяжелого изотопа водорода – дейтерия и изотопа лития с массовым числом 6.

Дейтерид лития-6 важен по двум причинам: он – твердое вещество и позволяет хранить «сконцентрированный» дейтерий при плюсовых температурах, и, кроме того, второй его компонент – литий-6 – это сырье для получения самого дефицитного изотопа водорода – трития. Собственно, 6 Li – единственный промышленный источник получения трития:

6 3 Li + 1 0 n → 3 1 H + 4 2 He.

Нейтроны, необходимые для этой ядерной реакции, дает взрыв атомного «капсюля» водородной бомбы, он же создает условия (температуру порядка 50 млн градусов) для реакции термоядерного синтеза.

В США идею использовать дейтерид лития-6 первым предложил доктор Э. Теллер. Но, по-видимому, советские ученые пришли к этой идее раньше: ведь не случайно первая термоядерная бомба в Советском Союзе была взорвана почти на полгода раньше, чем в США, и тем самым был положен конец американской политике ядерного и термоядерного шантажа.

Для атомной техники важно еще одно моно изотопное соединение пития – 7 LiF. Оно применяется для растворения соединений урана и тория непосредственно в реакторах.

Кстати, как теплоноситель в реакторах применяется именно литий-7, имеющий малое сечение захвата тепловых нейтронов, а не природная смесь изотопов элемента №3.

Вот уже много лет ученые во всем мире работают над проблемой управляемого, мирного термоядерного синтеза, и рано или поздно эта проблема будет решена. Тогда «демилитаризуется» и литий. (Этот странный оборот – производное заголовка зарубежной статьи, попавшейся несколько лет назад на глаза одному из авторов этого рассказа: статья называлась «Литий милитаризуется».) Но независимо от того, как скоро это произойдет, бесспорна справедливость другого высказывания. Оно заимствовано нами из «Краткой химической энциклопедии»: «По значимости в современной технике литий является одним из важнейших редких элементов».

Надеемся, что в справедливости этого высказывания у вас нет сомнений.

Изотопы лития

Природный литий состоит из двух изотопов с массовыми числами 6 и 7. По способности захватывать тепловые нейтроны (поперечное сечение захвата) ядра этих изотопов отличаются очень сильно. Тяжелый изотоп 7 Li имеет сечение захвата 0,033 барна, он практически прозрачен для нейтронов. Зато литнй-6 активно поглощает тепловые нейтроны, его сечение захвата – около тысячи (точнее, 912) барн. Несмотря на то, что в природе легкого лития в 12 раз меньше, чем тяжелого, сечение захвата природного лития довольно велико – 71 барн. Понятно, что «виновник» этого – изотоп 6 Li. Интересная деталь: стоимость изотопов лития совсем не пропорциональна их распространенности. В начале этого десятилетия в США относительно чистый литий-7 стоил почти в 10 раз дороже лития-6 очень высокой чистоты.

Искусственным путем получены еще два изотопа лития. Время их жизни крайне невелико: у лития-8 период полураспада равен 0,841 секунды, а у лития-9 0,168 секунды.

Как и прочие щелочные металлы, литий активен, мягок (режется ножом), всегда и во всех случаях проявляет строго постоянную валентность 1+. А отличается он тем, что значительно легче остальных щелочных металлов, реагирует с азотом, углеродом, водородом; зато с водой он взаимодействует менее активно: хотя и вытесняет из нее водород, но не воспламеняет его. Не только фторид, о котором рассказано в основной статье, но и карбонат, и ортофосфат лития плохо растворяются в воде – соответствующие соединения прочих щелочным металлов очень хорошо растворимы. И еще: литий – единственный щелочной металл, способный к образованию комплексных соединений.

Окись и перекись

С кислородом литий соединяется даже при обычной температуре, а при нагревании он воспламеняется и горит голубоватым пламенем. И в том и в другом случае образуется окись лития Li 2 O – тугоплавкое вещество, малорастворимое в воде. Другое соединение лития с кислородом – перекись лития Li 2 О 2 – в реакции между этими элементами никогда не образуется, его получают иным способом – при взаимодействии перекиси водорода с насыщенным спиртовым раствором гидрата окиси лития. При этом из раствора выпадает вещество такого состава: Li 2 O 2 ·H 2 O 2 ·3H 2 O. Если этот кристаллогидрат перекисей водорода и лития выдержать в вакууме над фосфорным ангидридом, то образуется свободная перекись лития.

Тот факт, что это соединение получается только «окольными путями», свидетельствует, что образование перекисных соединений для лития нехарактерно.

Для кондиционирования воздуха

Литиевые соли галогеноводородных кислот (кроме LiF) очень хорошо растворяются в воде. Но не это их главное достоинство. Растворы этих солей способны поглощать из воздуха аммиак, амины и другие примеси и, кроме того, при изменении температуры они обратимо поглощают пары воды. Это свойство позволило применить хлорид и бромид лития в установках для кондиционирования воздуха.

Как получают литий

Сказать, что литий получают электролизом – значит, почти ничего не сказать. Электролиз – лишь последняя стадия производства этого рассеянного элемента. Даже в сподумене и амблигоните – самых богатых литием минералах – содержание окиси элемента №3 редко превышает 7%.

Один из распространенных методов извлечения лития из сподумена – обработка раздробленного минерала серной кислотой. При этом образуются окиси кремния и алюминия и растворимый в воде сульфат лития. Его выщелачивают водой и превращают сначала в карбонат, а затем в хлорид, который и идет на электролиз.

Литий и кремний

Силицид лития – соединение, полученное еще в прошлом веке, но его формула, а, следовательно, и состав до сих пор не считаются окончательно установленными. Первым получил это вещество известный французский ученый Анри Муассан . Он нагревал в вакууме до 400...500°C смесь лития и кремния и получал легкие (чуть тяжелее воды) голубоватые кристаллы. Согласно Муассану, формула этого соединения Li 6 Si 2 . Эта формула и вызывает сомнения. Абсолютно достоверного ответа на вопрос, прав Муассан или нет, не получено не только оттого, что силицид лития не нашел пока практического применения, но и потому, что это соединение сложно получать, а исследовать еще сложнее. На воздухе силицид лития быстро разлагается.

Литий в психотерапии

Медики не раз наблюдали, что некоторые соединения лития (в соответствующих дозах, разумеется) оказывают положительное влияние на больных, страдающих маниакальной депрессией. Объясняют этот эффект двояко. С одной стороны, установлено, что литий способен регулировать активность некоторых ферментов, участвующих в переносе из межклеточной жидкости в клетки мозга ионов натрия и калия. С другой стороны, замечено, что ионы лития непосредственно воздействуют на ионный баланс клетки. А от баланса натрия и калия зависит в значительной мере состояние больного: избыток натрия в клетках характерен для депрессивных пациентов, недостаток – для страдающих маниями. Выравнивая натрий калиевый баланс, соли лития оказывают положительное влияние и на тех, и на других.

История открытия:

В 1817 г. шведский химик и минералог Август Арфведсон, анализируя природный минерал петалит, установил, что в нем содержится "огнепостоянная щелочь до сих пор неизвестной природы". Позднее он нашел аналогичные соединения в составе других минералов. Арфведсон предположил, что это соединения нового элемента и дал ему название литий (от греческого liqoz – камень).
Металлический литий был выделен в 1818 году английский химиком Гемфри Дэви электролизом расплава гидроксида лития.

Нахождение в природе и получение:

Природный литий состоит из двух стабильных изотопов - 6 Li (7,42%) и 7 Li (92,58%).
Литий - сравнительно мало распространенный элемент (массовая доля в земной коре 1,8*10 -3 %, 18 г/тонну). Кроме петалита LiAl, основными минералами лития являются слюда, лепидолит - KLi 1,5 Al 1,5 (F,OH) 2 и пироксен сподумен - LiAl.
В настоящее время для получения металлического лития его природные минералы или обрабатывают серной кислотой, или спекают с CaO или CaCO 3 , а затем выщелачивают водой. Получают растворы сульфата или гидроксида лития, из которых осаждают плохо растворимый карбонат Li 2 CO 3 , который затем переводят в хлорид LiCl. Электролизом расплава хлорида лития в смеси с хлоридом калия или бария получают металлический литий.

Физические свойства:

Простое вещество литий - мягкий щелочной металл серебристо-белого цвета. Из всех щелочных металлов он самый твердый, высокоплавкий (Ткип=180,5 и Тпл=1340° С). Это самый легкий металл (плотность 0,533 г/см 3), он плавает не только в воде, но и в керосине. Литий и его соли окрашивают пламя в карминно-красный цвет.

Химические свойства:

Литий проявляет типичные свойства щелочных металлов, взаимодействуя с водой, кислородом, другими неметаллами. Хранить его приходится под слоем под слоем минерального масла, придавливая сверху, чтобы не всплывал.
В соответствии с положением в ПСХЭ, литий наименее активный щелочной металл. Так в реакции с кислородом он образует в основном оксид лития, а не пероксиды как другие металлы. Подобно натрию литий растворяется в жидком аммиаке, образуя синий раствор с металлической проводимостью. Растворенный литий постепенно реагирует с аммиаком: 2Li + 2NH 3 = 2LiNH 2 + H 2 .
Литий отличается повышенной активностью при взаимодействии с азотом, образуя с ним уже при обычной температуре нитрид Li 3 N.
По некоторым свойствам литий и его соединения напоминают соединения магния (диагональное сходство в таблице Менделеева).

Важнейшие соединения:

Оксид лития, Li 2 O - белое кристаллическое вещество, основный оксид, с водой образует гидроксид

Гидроксид лития - LiOH - белый порошок, обычно моногидрат, LiOH*H 2 O, сильное основание

Соли лития - бесцветные кристаллические вещества, гигроскопичны, образуют кристаллогидраты состава LiX*3H 2 O. Карбонат и фторид лития подобно аналогичным солям магния малорастворимы. Карбонат и нитрат лития при нагревании разлагаются, образуя оксид лития:
Li 2 CO 3 = Li 2 O + CO 2 ; 4LiNO 3 = 2Li 2 O + 4NO 2 + O 2

Пероксид лития - Li 2 O 2 - белое кристаллическое вещество, получают реакцией гидроксида лития с пероксидом водорода: 2LiOH + H 2 O 2 = Li 2 O 2 + 2H 2 O
Используют в космических аппаратах и подводных лодках для получения кислорода:
2Li 2 O 2 + 2CO 2 = 2Li 2 CO 3 +O 2

Гидрид лития LiH получают взаимодействием расплавленного лития с водородом. Бесцветные кристаллы, реагирует с водой и кислотами с выделением водорода. Источник водорода в полевых условиях.

Применение:

Металлический литий - высокопрочные и сверхлегкие сплавы с магнием и алюминием для авиационной и космической техники. Легирующая добавка в металлургии (связывает азот, кремний, углерод). Теплоноситель (расплав) в ядерных реакторах.

Из лития изготовляют аноды химических источников тока и гальванических элементов с твёрдым электролитом.

Соединения: специальные стекла, глазури, эмали, керамика. Монокристаллы фторида лития используются для изготовления высокоэффективных (КПД 80 %) лазеров
LiOH как добавка в электролит щелочных аккумуляторов. Карбонат лития – добавка в расплав при производстве алюминия: снижает температуру плавления электролита, увеличивает силу тока, уменьшает нежелательное выделение фтора.

Металлоорганические соединения лития (например бутиллитий LiС 4 Н 9) - широко применяются в промышленном и лабораторном органическом синтезе и как катализаторы полимеризации.

Дейтерид лития-6: как источник дейтерия и трития в термоядерном оружии (водородная бомба).

Содержание лития в организме человека составляет около 70 мг. В течение суток в организм взрослого человека поступает около 100 мкг лития. Литий способствует высвобождению магния из клеточных «депо» и тормозит передачу нервного импульса, ингибируя проводимость нервной системы. Соли лития применяются психотропные лекарственные средства, оказывая успокаивающий эффект при лечении шизофрении и депрессии. Однако передозировка может привести к тяжелым осложнениям и летальному исходу.

Нурмаганбетов Т.
ТюмГУ, 582 группа, 2011 г.

Источники:
Литий // Википедия. URL: http://ru.wikipedia.org/wiki/Литий (дата обращения: 23.05.2013).
Литий // Онлайн Энциклопедия Кругосвет. URL: http://www.krugosvet.ru/enc/nauka_i_tehnika/himiya/LITI.html (дата обращения: 23.05.2013).