Примеры решения задач систем массового обслуживания

Требуется решить задачи 1–3. Исходные данные приведены в табл. 2–4.

Некоторые обозначения, применяемые в теории массового обслуживания, для формул:

n – число каналов в СМО;

λ – интенсивность входящего потока заявок П вх;

v – интенсивность выходящего потока заявок П вых;

μ – интенсивность потока обслуживания П об;

ρ – показатель нагрузки системы (трафик);

m – максимальное число мест в очереди, ограничивающее длину очереди заявок;

i – число источников заявок;

p к – вероятность k-го состояния системы;

p о – вероятность простаивания всœей системы, т. е. вероятность того, что всœе каналы свободны;

p сист – вероятность принятия заявки в систему;

p отк – вероятность отказа заявке в принятии ее в систему;

р об – вероятность того, что заявка будет обслужена;

А – абсолютная пропускная способность системы;

Q – относительная пропускная способность системы;

оч – среднее число заявок в очереди;

об – среднее число заявок под обслуживанием;

сист – среднее число заявок в системе;

оч – среднее время ожидания заявки в очереди;

об – среднее время обслуживания заявки, относящееся только к обслуженным заявкам;

сис – среднее время пребывания заявки в системе;

ож – среднее время, ограничивающее ожидание заявки в очереди;

– среднее число занятых каналов.

Абсолютная пропускная способность СМО А – среднее число заявок, ĸᴏᴛᴏᴩᴏᴇ может обслужить система за единицу времени.

Относительная пропускная способность СМО Q – отношение среднего числа заявок, обслуживаемых системой в единицу времени, к среднему числу поступающих за это время заявок.

При решении задач массового обслуживания крайне важно придерживаться нижеприведенной последовательности:

1) определœение типа СМО по табл. 4.1;

2) выбор формул в соответствии с типом СМО;

3) решение задачи;

4) формулирование выводов по задаче.

1.Схема гибели и размножения. Мы знаем, что, имея в распоряжении размеченный граф состояний, можно легко написать уравнения Колмогорова для вероятностей состояний, а также написать и решить алгебраические уравнения для финальных вероятностей. Стоит сказать, что для некоторых случаев удается последние уравнения

решить заранее, в буквенном виде. В частности, это удается сделать, в случае если граф состояний системы представляет собой так называемую ʼʼсхему гибели и размноженияʼʼ.

Граф состояний для схемы гибели и размножения имеет вид, показанный на рис. 19.1. Особенность этого графа в том, что всœе состояния системы можно вытянуть в одну цепочку, в которой каждое из средних состояний (S 1 , S 2 ,…,S n-1) связано прямой и обратной стрелкой с каждым из сосœедних состояний - правым и левым, а крайние состояния (S 0 , S n) - только с одним сосœедним состоянием. Термин ʼʼсхема гибели и размноженияʼʼ ведет начало от биологических задач, где подобной схемой описывается изменение численности популяции.

Схема гибели и размножения очень часто встречается в разных задачах практики, в частности - в теории массового обслуживания, в связи с этим полезно, один раз и навсœегда, найти для нее финальные вероятности состояний.

Предположим, что всœе потоки событии, переводящие систему по стрелкам графа,- простейшие (для краткости будем называть и систему S и протекающий в ней процесс - простейшими).

Пользуясь графом рис. 19.1, составим и решим алгебраические уравнения для финальных вероятностей состоянии), существование вытекает из того, что из каждого состояния можно перейти в каждое другое, в число состояний конечно). Для первого состояния S 0 имеем:

(19.1)

Для второго состояния S 1:

В силу (19.1) последнее равенство приводится к виду

где k принимает всœе значения от 0 до п. Итак, финальные вероятности p 0 , p 1 , ..., р n удовлетворяют уравнениям

(19.2)

кроме того, нужно учесть нормировочное условие

p 0 + p 1 + p 2 +…+ p n =1. (19.3)

Решим эту систему уравнений. Из первого уравнения (19.2)выразим p 1 через р 0 :

p 1 = p 0. (19.4)

Из второго, с учетом (19.4), получим:

(19.5)

‣‣‣ из третьего, с учетом (19.5),

(19.6)

и вообще, для любого k (от 1 до n ):

(19.7)

Обратим внимание на формулу (19.7). В числителœе стоит произведение всœех интенсивностей, стоящих у стрелок, ведущих слева направо (с начала и до данного состояния S k), а в знаменателœе - произведение всœех интенсивностей, стоящих у стрелок, ведущих справа налево (с начала и до S k).

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, всœе вероятности состояний р 0 , p 1 , ..., р n выражены через одну из них (р 0). Подставим эти выражения в нормировочное условие (19.3). Получим, вынося за скобку р 0:

отсюда получим выражение для р 0 :

(скобку мы возвели в степень -1, чтобы не писать двухэтажных дробей). Все остальные вероятности выражены через р 0 (см. формулы (19.4) - (19.7)). Заметим, что коэффициенты при р 0 в каждой из них представляют из себяне что иное, как последовательные члены ряда, стоящего после единицы в формуле (19.8). Значит, вычисляя р 0 , мы уже нашли всœе эти коэффициенты.

Полученные формулы очень полезны при решении простейших задач теории массового обслуживания.

^ 2. Формула Литтла. Теперь мы выведем одну важную формулу, связывающую (для предельного, стационарного режима) среднее число заявок L сист, находящихся в системе массового обслуживания (т. е. обслуживаемых или стоящих в очереди), и среднее время пребывания заявки в системе W сист.

Рассмотрим любую СМО (одноканальную, многоканальную, марковскую, немарковскую, с неограниченной или с ограниченной очередью) и связанные с нею два потока событий: поток заявок, прибывающих в СМО, и поток заявок, покидающих СМО. В случае если в системе установился предельный, стационарный режим, то среднее число заявок, прибывающих в СМО за единицу времени, равно среднему числу заявок, покидающих ее: оба потока имеют одну и ту же интенсивность λ.

Обозначим: X(t} - число заявок, прибывших в СМО до момента t. Y (t ) - число заявок покинувших СМО

до момента t. И та͵ и другая функции являются случайными и меняются скачком (увеличиваются на единицу) в моменты приходов заявок (X (t )) и уходов заявок (Y(t)). Вид функций X(t) и Y(t) показан на рис. 19.2; обе линии - ступенчатые, верхняя - X(t), нижняя-Y(t). Очевидно, что для любого момента t их разность Z (t ) = X(t) - Y(t) есть не что иное, как число заявок, находящихся в СМО. Когда линии X(t) и Y(t) сливаются, в системе нет заявок.

Рассмотрим очень большой промежуток времени Т (мысленно продолжив график далеко за пределы чертежа) и вычислим для него среднее число заявок, находящихся в СМО. Оно будет равно интегралу от функции Z(t) на этом промежутке, делœенному на длину интервала Т:

L сист. = . (19.9) о

Но данный интеграл представляет собой не что иное, как площадь фигуры, заштрихованной на рис. 19.2. Разглядим хорошенько данный рисунок. Фигура состоит из прямоугольников, каждый из которых имеет высоту, равную единице, и основание, равное времени пребывания в системе соответствующей заявки (первой, второй и т. д.). Обозначим эти времена t 1 , t 2 ,... Правда, под конец промежутка Т некоторые прямоугольники войдут в заштрихованную фигуру не полностью, а частично, но при достаточно большом Т эти мелочи не будут играть роли. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, можно считать, что

(19.10)

где сумма распространяется на всœе заявки, пришедшие за время Т.

Разделим правую и левую часть (.19.10) на длину интервала Т. Получим, с учетом (19.9),

L сист. = . (19.11)

Разделим и умножим правую часть (19.11) на интенсивность X:

L сист. = .

Но величина Тλ есть не что иное, как среднее число заявок, пришедших за время ^ Т. В случае если мы разделим сумму всœех времен t i на среднее число заявок, то получим среднее время пребывания заявки в системе W сист. Итак,

L сист. = λW сист. ,

W сист. = . (19.12)

Это и есть замечательная формула Литтла: для любой СМО, при любом характере потока заявок, при любом распределœении времени обслуживания, при любой дисциплинœе обслуживания среднее время пребывания заявки в системе равно среднему числу заявок в системе, делœенному на интенсивность потока заявок.

Точно таким же образом выводится вторая формула Литтла, связывающая среднее время пребывания заявки в очереди ^ W оч и среднее число заявок в очереди L оч:

W оч = . (19.13)

Для вывода достаточно вместо нижней линии на рис. 19.2 взять функцию U(t) - количество заявок, ушедших до момента t не из системы, а из очереди (если заявка, пришедшая в систему, не становится в очередь, а сразу идет под обслуживание, можно всœе же считать, что она становится в очередь, но находится в ней нулевое время).

Формулы Литтла (19.12) и (19.13) играют большую роль в теории массового обслуживания. К сожалению, в большинстве существующих руководств эти формулы (доказанные в общем виде сравнительно недавно) не приводятся 1).

§ 20. Простейшие системы массового обслуживания и их характеристики

В этом параграфе мы рассмотрим, некоторые простейшие СМО и выведем выражения для их характеристик (показателœей эффективности). При этом мы продемонстрируем основные методические приемы, характерные для элементарной, ʼʼмарковскойʼʼ теории массового обслуживания. Мы не будем гнаться за количеством образцов СМО, для которых будут выведены конечные выражения характеристик; данная книга - не справочник по теории массового обслуживания (такую роль гораздо лучше выполняют специальные руководства). Наша цель - познакомить читателя с некоторыми ʼʼмаленькими хитростямиʼʼ, облегчающими путь сквозь теорию массового обслуживания, которая в ряде имеющихся (даже претендующих на популярность) книг может показаться бессвязным набором примеров.

Все потоки событий, переводящие СМО из состояния в состояние, в данном параграфе мы будем считать простейшими (не оговаривая это каждый раз специально). В их числе будет и так называемый ʼʼпоток обслуживанииʼʼ. Под ним разумеется поток заявок, обслуживаемых одним непрерывно занятым каналом. В этом потоке интервал между событиями, как и всœегда в простейшем потоке, имеет показательное распределœение (во многих руководствах вместо этого говорят: ʼʼвремя обслуживания - показательноеʼʼ, мы и сами в дальнейшем будем пользоваться таким термином).

1) В популярной книжке дан несколько иной, по сравнению с вышеизложенным, вывод формулы Литтла. Вообще, знакомство с этой книжкой (ʼʼБеседа втораяʼʼ) полезно для первоначального ознакомления с теорией массового обслуживания.

В данном параграфе показательное распределœение времени обслуживания будет само собой разуметься, как всœегда для ʼʼпростейшейʼʼ системы.

Характеристики эффективности рассматриваемых СМО мы будем вводить по ходу изложения.

^ 1. п -канальная СМО с отказами (задача Эрланга). Здесь мы рассмотрим одну из первых по времени, ʼʼклассическихʼʼ задач теории массового обслуживания;

эта задача возникла из практических нужд телœефонии и была решена в начале нашего века датским математиком Эрлантом. Задача ставится так: имеется п каналов (линий связи), на которые поступает поток заявок с интенсивностью λ. Поток обслуживании имеет интенсивность μ (величина, обратная среднему времени обслуживания t об). Найти финальные вероятности состояний СМО, а также характеристики ее эффективности:

^ А - абсолютную пропускную способность, т. е. среднее число заявок, обслуживаемых в единицу времени;

Q - относительную пропускную способность, т. е. среднюю долю пришедших заявок, обслуживаемых системой;

^ Р отк - вероятность отказа, т. е. того, что заявка покинœет СМО не обслуженной;

k - среднее число занятых каналов.

Решение. Состояния системы ^ S (СМО) будем нумеровать по числу заявок, находящихся в системе (в данном случае оно совпадает с числом занятых каналов):

S 0 - в СМО нет ни одной заявки,

S 1 - в СМО находится одна заявка (один канал занят, остальные свободны),

S k - в СМО находится k заявок (k каналов заняты, остальные свободны),

S n - в СМО находится п заявок (всœе n каналов заняты).

Граф состояний СМО соответствует схеме гибели в размножения (рис. 20.1). Разметим данный граф - проставим у стрелок интенсивности потоков событий. Из S 0 в S 1 систему переводит поток заявок с интенсивностью λ (как только приходит заявка, система перескакивает из S 0 в S 1). Тот же поток заявок переводит

систему из любого левого состояния в сосœеднее правое (см. верхние стрелки на рис. 20.1).

Проставим интенсивности у нижних стрелок. Пусть система находится в состоянии ^ S 1 (работает один канал). Он производит μ обслуживании в единицу времени. Проставляем у стрелки S 1 → S 0 интенсивность μ. Теперь представим себе, что система находится в состоянии S 2 (работают два канала). Чтобы ей перейти в S 1 , нужно, чтобы либо закончил обслуживание первый канал, либо второй; суммарная интенсивность их потоков обслуживании равна 2μ; проставляем ее у соответствующей стрелки. Суммарный поток обслуживании, даваемый тремя каналами, имеет интенсивность 3μ, k каналами - kμ. Проставляем эти интенсивности у нижних стрелок на рис. 20.1.

А теперь, зная всœе интенсивности, воспользуемся уже готовыми формулами (19.7), (19.8) для финальных вероятностей в схеме гибели и размножения. По формуле (19.8) получим:

Члены разложения будут представлять собой коэффициенты при р 0 в выражениях для p 1

Заметим, что в формулы (20.1), (20.2) интенсивности λ и μ входят не по отдельности, а только в виде отношения λ/μ. Обозначим

λ/μ = ρ (20.3)

и будем называть величину р ʼʼприведенной интенсивностью потока заявокʼʼ. Ее смысл-среднее число заявок, приходящее за среднее время обслуживания одной заявки. Пользуясь этим обозначением, перепишем формулы (20.1), (20.2) в виде:

Формулы (20.4), (20.5) для финальных вероятностей состояний называются формулами Эрланга - в честь основателя теории массового обслуживания. Большинство других формул этой теории (сегодня их больше, чем грибов в лесу) не носит никаких специальных имен.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, финальные вероятности найдены. По ним мы вычислим характеристики эффективности СМО. Сначала найдем ^ Р отк . - вероятность того, что пришедшая заявка получит отказ (не будет обслужена). Для этого нужно, чтобы всœе п каналов были заняты, значит,

Р отк = р n = . (20.6)

Отсюда находим относительную пропускную способность - вероятность того, что заявка будет обслужена:

Q = 1 – P отк. = 1 - (20.7)

Абсолютную пропускную способность получим, умножая интенсивность потока заявок λ, на Q:

A = λQ = λ. (20.8)

Осталось только найти среднее число занятых каналов k. Эту величину можно было бы найти ʼʼвпрямуюʼʼ, как математическое ожидание дискретной случайной величины с возможными значениями 0, 1, ..., п и вероятностями этих значений р 0 р 1 , ..., р n:

k = 0 · р 0 + 1 · p 1 + 2 · р 2 + ... + п · р n .

Подставляя сюда выражения (20.5) для р k , (k = 0, 1, ..., п) и выполняя соответствующие преобразования, мы, в конце концов, получили бы верную формулу для k. Но мы выведем ее гораздо проще (вот она, одна из ʼʼмаленьких хитростейʼʼ!) В самом делœе, нам известна абсолютная пропускная способность А. Это - не что иное, как интенсивность потока обслуженных системой заявок. Каждый занятый i .шал в единицу времени обслуживает в среднем |л заявок. Значит, среднее число занятых каналов равно

k = A/μ, (20.9)

или, учитывая (20.8),

k = (20.10)

Рекомендуем читателю самостоятельно решить пример.
Размещено на реф.рф
Имеется станция связи с тремя каналами (n = 3), интенсивность потока заявок λ = 1,5 (заявки в минуту); среднее время обслуживания одной заявки t об = 2 (мин.), всœе потоки событий (как и во всœем этом параграфе) - простейшие. Найти финальные вероятности состояний и характеристики эффективности СМО: А, Q, P отк, k. На всякий случай сообщаем ответы: p 0 = 1/13, p 1 = 3/13, p 2 = 9/26, р 3 = 9/26 ≈ 0,346,

А ≈ 0,981, Q ≈ 0,654, P отк ≈ 0,346, k ≈ 1,96.

Из ответов видно, между прочим, что наша СМО в значительной мере перегружена: из трех каналов занято в среднем около двух, а из поступающих заявок около 35% остаются не обслуженными. Предлагаем читателю, в случае если он любопытен и нелœенив, узнать: сколько потребуется каналов для того, чтобы удовлетворить не менее 80% поступающих заявок? И какая доля каналов при этом будет простаивать?

Тут уже проглядывает некоторый намек на оптимизацию. В самом делœе, содержание каждого канала в единицу времени обходится в какую-то сумму. Вместе с тем, каждая обслуженная заявка приносит какой-то доход. Умножая данный доход на среднее число заявок А, обслуживаемых в единицу времени, мы получим средний доход от СМО в единицу времени. Естественно, при увеличении числа каналов данный доход растет, но растут и расходы, связанные с содержанием каналов. Что перевесит - увеличение доходов или расходов? Это зависит от условий операции, от ʼʼплаты за обслуживание заявкиʼʼ и от стоимости содержания канала. Зная эти величины, можно найти оптимальное число каналов, наиболее эффективное экономически. Мы такой задачи решать не будем, предоставляя всœе тому же ʼʼнелœенивому и любопытному читателюʼʼ придумать пример и решить. Вообще, придумывание задач больше развивает, чем решение уже поставленных кем-то.

^ 2. Одноканальная СМО с неограниченной очередью. На практике довольно часто встречаются одноканальные СМО с очередью (врач, обслуживающий пациентов; телœефон-автомат с одной будкой; ЭВМ, выполняющая заказы пользователœей). В теории массового обслуживания одноканальные СМО с очередью также занимают особое место (именно к таким СМО относится большинство полученных до сих пор аналитических формул для немарковских систем). По этой причине мы уделим одноканальной СМО с очередью особое внимание.

Пусть имеется одноканальная СМО с очередью, на которую не наложено никаких ограничений (ни по длинœе очереди, ни по времени ожидания). На эту СМО поступает поток заявок с интенсивностью λ; поток обслуживании имеет интенсивность μ, обратную среднему времени обслуживания заявки t об. Требуется найти финальные вероятности состояний СМО, а также характеристики ее эффективности:

L сист. - среднее число заявок в системе,

W сист. - среднее время пребывания заявки в системе,

^ L оч - среднее число заявок в очереди,

W оч - среднее время пребывания заявки в очереди,

P зан - вероятность того, что канал занят (степень загрузки канала).

Что касается абсолютной пропускной способности А и относительной Q, то вычислять их нет нужнобности:

в силу того, что очередь неограниченна, каждая заявка рано или поздно будет обслужена, в связи с этим А = λ, по той же причинœе Q = 1.

Решение. Состояния системы, как и раньше, будем нумеровать по числу заявок, находящихся в СМО:

S 0 - канал свободен,

S 1 - канал занят (обслуживает заявку), очереди нет,

S 2 - канал занят, одна заявка стоит в очереди,

S k - канал занят, k - 1 заявок стоят в очереди,

Теоретически число состояний ничем не ограничено (бесконечно). Граф состоянии имеет вид, показанный на рис. 20.2. Это - схема гибели и размножения, но с бесконечным числом состояний. По всœем стрелкам поток заявок с интенсивностью λ переводит систему слева направо, а справа налево - поток обслуживании с интенсивностью μ.

Прежде всœего спросим себя, а существуют ли в данном случае финальные вероятности? Ведь число состояний системы бесконечно, и, в принципе, при t → ∞ очередь может неограниченно возрастать! Да, так оно и есть: финальные вероятности для такой СМО существуют не всœегда, а только когда система не перегружена. Можно доказать, что если ρ строго меньше единицы (ρ< 1), то финальные вероятности существуют, а при ρ ≥ 1 очередь при t → ∞ растет неограниченно. Особенно ʼʼнепонятнымʼʼ кажется данный факт при ρ = 1. Казалось бы, к системе не предъявляется невыполнимых требований: за время обслуживания одной заявки приходит в среднем одна заявка, и всœе должно быть в порядке, а вот на делœе - не так. При ρ = 1 СМО справляется с потоком заявок, только если поток данный - регулярен, и время обслуживания - тоже не случайное, равное интервалу между заявками. В этом ʼʼидеальномʼʼ случае очереди в СМО вообще не будет, канал будет непрерывно занят и будет регулярно выпускать обслуженные заявки. Но стоит только потоку заявок или потоку обслуживании стать хотя бы чуточку случайными - и очередь уже будет расти до бесконечности. На практике этого не происходит только потому, что ʼʼбесконечное число заявок в очередиʼʼ - абстракция. Вот к каким грубым ошибкам может привести замена случайных величин их математическими ожиданиями!

Но вернемся к нашей одноканальной СМО с неограниченной очередью. Строго говоря, формулы для финальных вероятностей в схеме гибели и размножения выводились нами только для случая конечного числа состояний, но позволим себе вольность - воспользуемся ими и для бесконечного числа состояний. Подсчитаем финальные вероятности состояний по формулам (19.8), (19.7). В нашем случае число слагаемых в формуле (19.8) будет бесконечным. Получим выражение для р 0:

p 0 = -1 =

= (1 + р + р 2 + ... + р k +… .) -1 . (20.11)

Ряд в формуле (20.11) представляет собой геометрическую прогрессию. Мы знаем, что при ρ < 1 ряд сходится - это бесконечно убывающая геометрическая прогрессия со знаменателœем р.
Размещено на реф.рф
При р ≥ 1 ряд расходится (что является косвенным, хотя и не строгим доказательством того, что финальные вероятности состояний р 0 , p 1 , ..., p k , ... существуют только при р<1). Теперь предположим, что это условие выполнено, и ρ <1. Суммируя прогрессию в (20.11), имеем

1 + ρ + ρ 2 + ... + ρ k + ... = ,

p 0 = 1 - ρ. (20.12)

Вероятности р 1 , р 2 , ..., р k , ... найдутся по формулам:

p 1 = ρp 0 , p 2 = ρ 2 p 0 ,…,p k = ρp 0 , ...,

откуда, с учетом (20.12), найдем окончательно:

p 1 = ρ (1 - ρ), p 2 = ρ 2 (1 - ρ), . . . , p k = ρ k (1 - ρ), . . .(20.13)

Как видно, вероятности p 0 , p 1 , ..., p k , ... образуют геометрическую прогрессию со знаменателœем р.
Размещено на реф.рф
Как это ни странно, максимальная из них р 0 - вероятность того, что канал будет вообще свободен. Как бы ни была нагружена система с очередью, в случае если только она вообще справляется с потоком заявок (ρ<1), самое вероятное число заявок в системе будет 0.

Найдем среднее число заявок в СМО ^ L сист . . Тут придется немного повозиться. Случайная величина Z - число заявок в системе - имеет возможные значения 0, 1, 2, .... k, ... с вероятностями p 0 , р 1 , р 2 , ..., p k , ... Ее математическое ожидание равно

L сист = 0 · p 0 + 1 · p 1 + 2 · p 2 +…+k · p k +…= (20.14)

(сумма берется не от 0 до ∞, а от 1 до ∞, так как нулевой член равен нулю).

Подставим в формулу (20.14) выражение для p k (20.13):

L сист. =

Теперь вынесем за знак суммы ρ (1-ρ):

L сист. = ρ (1-ρ)

Тут мы опять применим ʼʼмаленькую хитростьʼʼ: k ρ k -1 есть не что иное, как производная по ρ от выражения ρ k ; значит,

L сист. = ρ (1-ρ)

Меняя местами операции дифференцирования п суммирования, получим:

L сист. = ρ (1-ρ) (20.15)

Но сумма в формуле (20.15) есть не что иное, как сумма бесконечно убывающей геометрической прогрессии с первым членом ρ и знаменателœем ρ; эта сумма

равна , а ее производная .Подставляя это выражение в (20.15), получим:

L сист = . (20.16)

Ну, а теперь применим формулу Литтла (19.12) и найдем среднее время пребывания заявки в системе:

W сист = (20.17)

Найдем среднее число заявок в очереди L оч. Будем рассуждать так: число заявок в очереди равно числу заявок в системе минус число заявок, находящихся под обслуживанием. Значит (по правилу сложения математических ожиданий), среднее число заявок в очереди L оч равно среднему числу заявок в системе L сист минус среднее число заявок под обслуживанием. Число заявок под обслуживанием должна быть либо нулем (если канал свободен), либо единицей (если он занят). Математическое ожидание такой случайной величины равно вероятности того, что канал занят (мы ее обозначили Р зан). Очевидно, Р зан равно единице минус вероятность р 0 того, что канал свободен:L внеш и среднее время этого ожидания W внеш (две последние величины связаны формулой Литтла). Наконец, найдите суммарный суточный штраф Ш, который придется заплатить станции за простои составов на внешних путях, в случае если за один час простоя одного состава станция платит штраф а (руб.). На всякий случай сообщаем ответы: L сист. = 2 (состава), W сист. = 1 (час), L оч = 4/3 (состава), W оч = 2/3 (часа), L внеш = 16/27 (состава), W внеш = 8/27 ≈ 0,297 (часа). Средний суточный штраф Ш за ожидание составов на внешних путях получим, перемножая среднее число составов, прибывающих на станцию за сутки, среднее время ожидания состава на внешних путях и часовой штраф а : Ш ≈ 14,2а .

^ 3. re-канальная СМО с неограниченной очередью. Совершенно аналогично задаче 2, но чуточку более сложно, решается задача об n -канальной СМО с неограниченной очередью. Нумерация состояний - опять по числу заявок, находящихся в системе:

N <1. В случае если ρ/n ≥ 1, очередь растет до бесконечности.

Предположим, что условие ρ/n < 1 выполнено, и финальные вероятности существуют. Применяя всœе те же формулы (19.8), (19.7) для схемы гибели и размножения, найдем эти финальные вероятности. В выражении для р 0 будет стоять ряд членов, содержащих факториалы, плюс сумма бесконечно убывающей геометрической прогрессии со знаменателœем ρ/n . Суммируя ее, найдем

(20.22)

Теперь найдем характеристики эффективности СМО. Из них легче всœего находится среднее число занятых каналов k == λ/μ, = ρ (это вообще справедливо для любой СМО с неограниченной очередью). Найдем среднее число заявок в системе L сист и среднее число заявок в очереди L оч. Из них легче вычислить второе, по формуле

L оч =

выполняя соответствующие преобразования по образцу задачи 2

(с дифференцированием ряда), получим:

L оч = (20.23)

Прибавляя к нему среднее число заявок под обслуживанием (оно же - среднее число занятых каналов) k = ρ, получим:

L сист = L оч + ρ. (20.24)

Деля выражения для L оч и L сист на λ, по формуле Литтла получим средние времена пребывания заявки в очереди и в системе:

(20.25)

А теперь решим любопытный пример.
Размещено на реф.рф
Желœезнодорожная касса по продаже билетов с двумя окошками представляет собой двухканальную СМО с неограниченной очередью, устанавливающейся сразу к двум окошкам (если одно окошко освобождается, ближайший в очереди пассажир его занимает). Касса продает билеты в два пункта: А и В. Интенсивность потока заявок (пассажиров, желающих купить билет) для обоих пунктов А и В одинакова: λ А = λ В = 0,45 (пассажира в минуту), а в сумме они образуют общий поток заявок с интенсивностью λ А + λ В = 0,9. Кассир тратит на обслуживание пассажира в среднем две минуты. Опыт показывает, что у кассы скапливаются очереди, пассажиры жалуются на медленность обслуживания, Поступило рационализаторское предложение: вместо одной кассы, продающей билеты и в А и в В, создать две специализированные кассы (по одному окошку в каждой), продающие билеты одна - только в пункт А , другая - только в пункт В. Разумность этого предложения вызывает споры - кое-кто утверждает, что очереди останутся прежними. Требуется проверить полезность предложения расчетом. Так как мы умеем считать характеристики только для простейших СМО, допустим, что всœе потоки событий - простейшие (на качественной стороне выводов это не скажется).

Ну, что же, возьмемся за дело. Рассмотрим два варианта организации продажи билетов - существующий и предлагаемый.

Вариант I (существующий). На двухканальную СМО поступает поток заявок с интенсивностью λ = 0,9; интенсивность потока обслуживании μ = 1/2 = 0,5; ρ = λ/μ = l,8. Так как ρ/2 = 0,9<1, финальные вероятности существуют. По первой формуле (20.22) находим р 0 ≈ 0,0525. Среднее, число заявок в очереди находим по формуле (20.23): L оч ≈ 7,68; среднее время, проводимое заявкой в очереди (по первой из формул (20.25)), равно W оч ≈ 8,54 (мин.).

Вариант II (предлагаемый). Надо рассмотреть две одноканальные СМО (два специализированных окошка); на каждую поступает поток заявок с интенсивностью λ = 0,45; μ. по-прежнему равно 0,5; ρ = λ/μ = 0,9<1; финальные вероятности существуют. По формуле (20.20) находим среднюю длину очереди (к одному окошку) L оч = 8,1.

Вот тебе и раз! Длина очереди, оказывается, не только не уменьшилась, а увеличилась! Может быть, уменьшилось среднее время ожидания в очереди? Посмотрим. Деля L оч на λ = 0,45, получим W оч ≈ 18 (минут).

Вот так рационализация! Вместо того чтобы уменьшиться, и средняя длина очереди, и среднее время ожидания в ней увеличились!

Давайте попробуем догадаться, почему так произошло? Пораскинув мозгами, приходим к выводу: произошло это потому, что в первом варианте (двухканальная СМО) меньше средняя доля времени, которую простаивае

Примеры решения задач систем массового обслуживания - понятие и виды. Классификация и особенности категории "Примеры решения задач систем массового обслуживания" 2017, 2018.

Ниже будут рассмотрены примеры простейших систем массового обслуживания (СМО). Понятие «простейшие» не означает «элементарные». Математические модели этих систем применимы и успешно используются в практических расчетах.

Одноканальная смо с отказами

Дано : система имеет один канал обслуживания, на который поступает простейший поток заявок с интенсивностью. Поток обслуживаний имеет интенсивность. Заявка, заставшая систему занятой, сразу же покидает ее.

Найти : абсолютную и относительную пропускную способность СМО и вероятность того, что заявка, пришедшая в момент времени t, получит отказ.

Система при любом t > 0 может находиться в двух состояниях:S 0 – канал свободен;S 1 – канал занят. Переход изS 0 вS 1 связан с появлением заявки и немедленным началом ее обслуживания. Переход изS 1 вS 0 осуществляется, как только очередное обслуживание завершится (рис.4).

Рис.4. Граф состояний одноканальной СМО с отказами

Выходные характеристики (характеристики эффективности) этой и других СМО будут даваться без выводов и доказательств.

Абсолютная пропускная способность (среднее число заявок, обслуживаемых в единицу времени):

где – интенсивность потока заявок (величина, обратная среднему промежутку времени между поступающими заявками -);

–интенсивность потока обслуживаний (величина, обратная среднему времени обслуживания )

Относительная пропускная способность (средняя доля заявок, обслуживаемых системой):

Вероятность отказа (вероятность того, что заявка покинет СМО необслуженной):

Очевидны следующие соотношения: и.

Пример . Технологическая система состоит из одного станка. На станок поступают заявки на изготовление деталей в среднем через 0,5 часа. Среднее время изготовления одной детали равно. Если при поступлении заявки на изготовление детали станок занят, то она (деталь) направляется на другой станок. Найти абсолютную и относительную пропускную способности системы и вероятность отказа по изготовлению детали.

Т.е. в среднем примерно 46 % деталей обрабатываются на этом станке.

.

Т.е. в среднем примерно 54 % деталей направляются на обработку на другие станки.

N – канальная смо с отказами (задача Эрланга)

Это одна из первых задач теории массового обслуживания. Она возникла из практических нужд телефонии и была решена в начале 20 века датским математиком Эрлангом.

Дано : в системе имеетсяn – каналов, на которые поступает поток заявок с интенсивностью. Поток обслуживаний имеет интенсивность. Заявка, заставшая систему занятой, сразу же покидает ее.

Найти : абсолютную и относительную пропускную способность СМО; вероятность того, что заявка, пришедшая в момент времениt , получит отказ; среднее число заявок, обслуживаемых одновременно (или, другими словам, среднее число занятых каналов).

Решение . Состояние системыS (СМО) нумеруется по максимальному числу заявок, находящихся в системе (оно совпадает с числом занятых каналов):

    S 0 – в СМО нет ни одной заявки;

    S 1 – в СМО находится одна заявка (один канал занят, остальные свободны);

    S 2 – в СМО находится две заявки (два канала заняты, остальные свободны);

    S n – в СМО находитсяn – заявок (всеn – каналов заняты).

Граф состояний СМО представлен на рис. 5

Рис.5 Граф состояний для n – канальной СМО с отказами

Почему граф состояний размечен именно так? Из состояния S 0 в состояниеS 1 систему переводит поток заявок с интенсивностью(как только приходит заявка, система переходит изS 0 вS 1). Если система находилась в состоянииS 1 и пришла еще одна заявка, то она переходит в состояниеS 2 и т.д.

Почему такие интенсивности у нижних стрелок (дуг графа)? Пусть система находится в состоянии S 1 (работает один канал). Он производитобслуживаний в единицу времени. Поэтому дуга перехода из состоянияS 1 в состояниеS 0 нагружена интенсивностью. Пусть теперь система находится в состоянииS 2 (работают два канала). Чтобы ей перейти вS 1 , нужно, чтобы закончил обслуживание первый канал, либо второй. Суммарная интенсивность их потоков равнаи т.д.

Выходные характеристики (характеристики эффективности) данной СМО определяются следующим образом.

Абсолютная пропускная способность :

где n – количество каналов СМО;

–вероятность нахождения СМО в начальном состоянии, когда все каналы свободны (финальная вероятность нахождения СМО в состоянии S 0);

Рис.6. Граф состояний для схемы «гибели и размножения»

Для того, чтобы написать формулу для определения , рассмотрим рис.6

Граф, представленный на этом рисунке, называют еще графом состояний для схемы «гибели и размножения». Напишем сначала для общую формулу (без доказательства):

Кстати, остальные финальные вероятности состояний СМО запишутся следующим образом.

S 1 , когда один канал занят:

Вероятность того, что СМО находится в состоянии S 2 , т.е. когда два канала заняты:

Вероятность того, что СМО находится в состоянии S n , т.е. когда все каналы заняты.

Теперь для n – канальной СМО с отказами

Относительная пропускная способность:

Напомним, что это средняя доля заявок, обслуживаемых системой. При этом

Вероятность отказа :

Напомним, что это вероятность того, что заявка покинет СМО необслуженной. Очевидно, что .

Среднее число занятых каналов (среднее число заявок, обслуживаемых одновременно):

Задача 1. На диспетчерский пульт поступает поток заявок, который является потоком Эрланга второго порядка. Интенсивность потока заявок равна 6 заявок в час. Если диспетчер в случайный момент оставляет пульт, то при первой же очередной заявке он обязан вернуться к пульту. Найти плотность распределения времени ожидания очередной заявки и построить ее график. Вычислить вероятность того, что диспетчер сможет отсутствовать от 10 до 20 минут. Решение . Поскольку поток Эрланга второго порядка является стационарным потоком с ограниченным последействием, то для него справедлива формула Пальма

где f1(θ)- плотность распределения вероятностей для времени ожидания первого ближайшего события;
λ - интенсивность потока;
- порядок потока;
(θ) - функция распределения вероятностей для времени между двумя соседними событиями потока Эрланга - го порядка (Э).
Известно, что функция распределения для потока Э имеет вид

. (2)

По условиям задачи поток заявок является Эрланговским порядка =2. Тогда из (1) и (2) получим
.
Из последнего соотношения при λ=6 будем иметь

f1(θ)=3е-6θ(1+6 θ), θ≥0. (3)

Построим график функции f1(θ) . При θ <0 имеем f1(θ) =0 . При θ =0 , f1(0)=3 . Рассмотрим предел

При вычислении предела для раскрытия неопределенности типа использовано правило Лопиталя . По результатам исследований строим график функции f1(θ) (Рис. 1).


Обратим внимание на размерности времени в тексте задачи: для интенсивности это заявки в час, для времени-минуты. Перейдем к одним единицам времени: 10 мин=1/6 час, 20 мин=1/3 час. Для этих значений можно вычислить f1(θ) и уточнить характер кривой


Эти ординаты указаны на графике над соответствующими точками кривой.
Из курса теории вероятностей известно, что вероятность попадания случайной величины Х в отрезок [α, β] численно равна площади под кривой плотности распределения вероятностей f(х) . Эта площадь выражается определенным интегралом

Следовательно, искомая вероятность равна

Этот интеграл легко вычисляется по частям, если положить
U=1+6θ и dV=е-6θ . Тогда dU=6 и V= .
Используя формулу получим

Ответ: вероятность того, что диспетчер сможет отсутствовать от 10 до 20 минут равна 0,28.

Задача 2. Дисплейный зал имеет 5 дисплеев. Поток пользователей простейший. Среднее число пользователей, посещающих дисплейный зал за сутки, равно 140. Время обработки информации одним пользователем на одном дисплее распределено по показательному закону и составляет в среднем 40 минут. Определить, существует ли стационарный режим работы зала; вероятность того, что пользователь застанет все дисплеи занятыми; среднее число пользователей в дисплейном зале; среднее число пользователей в очереди; среднее время ожидания свободного дисплея; среднее время пребывания пользователя в дисплейном зале. Решение. Рассматриваемая в задаче СМО относится к классу многоканальных систем с неограниченной очередью. Число каналов =5. Найдем λ-интенсивность потока заявок: где (час.) - среднее время между двумя последовательными заявками входящего потока пользователей. Тогда польз./час.

Найдем -интенсивность потока обслуживания: , где М[Т обсл.]=40 мин=0,67 часа - среднее время обслуживания одного пользователя одним дисплеем,

тогда польз/час.

Таким образом, классификатор данной системы имеет вид СМО (5, ∞; 5,85; 1,49).
Вычислим коэффициент загрузки СМО . Известно, что для СМО такого класса стационарный режим существует, если отношение коэффициента загрузки системы к числу каналов меньше единицы. Находим это отношение
.
Следовательно, стационарный режим существует. Предельное распределение вероятностей состояний вычисляется по формулам


Поскольку =5, имеем

Вычислим Р*- вероятность того, что пользователь застанет все дисплеи занятыми. Очевидно, она равна сумме вероятностей таких событий: все дисплеи заняты, очереди нет (р5); все дисплеи заняты, один пользователь в очереди (р6); все дисплеи заняты, два пользователя в очереди (р7) и так далее. Поскольку для полной группы событий сумма вероятностей этих событий равна единице, то справедливо равенство

Р*=р5+р6+р7+…=1 - ро - р1 - р2 - р3 - р4.

Найдем эти вероятности: ро =0,014; р1 =3,93*0,014; р2 =7,72*0,014; р3 =10,12*0,014; р4 =9,94*0,014.
Вынося за скобки общий множитель, получим
Р*=1-0,0148*(1+3,93+7,72+10,12+9,94)=1-0,014*32,71=1-0,46=0,54.
Используя формулы для вычисления показателей эффективности? найдем:

  • 1. среднее число пользователей в очереди

2. среднее число пользователей в дисплейном зале

3. среднее время ожидания свободного дисплея

4. среднее время пребывания пользователя в дисплейном зале

Ответ: стационарный режим работы дисплейного зала существует и характеризуется следующими показателями Р* =0,54; пользователя; пользователя; ; .

Задача 3. В двухканальную систему массового обслуживания (СМО) с отказами поступает стационарный пуассоновский поток заявок. Время между поступлениями двух последовательных заявок распределено по показательному закону с параметром λ=5 заявок в минуту. Длительность обслуживания каждой заявки равна 0,5 мин. Методом Монте-Карло найти среднее число обслуженных заявок за время 4 мин. Указание: провести три испытания. Решение. Изобразим статистическое моделирование работы заданной СМО с помощью временных диаграмм. Введем следующие обозначения для временных осей:
Вх -входящий поток заявок, здесь ti -моменты поступления заявок; Ti -интервалы времени между двумя последовательными заявками. Очевидно, что ti =ti -1 i .
К1-первый канал обслуживания;
К2-второй канал обслуживания; здесь жирные линии на временной оси обозначают интервалы занятости канала. Если оба канала свободны, то заявка становится под обслуживание в канал К1, в случае его занятости заявка обслуживается каналом К2.
Если заняты оба канала, то заявка покидает СМО необслуженной.
Вых ОБ-выходящий поток обслуженных заявок.
Вых ПТ-выходящий поток потерянных заявок за счет отказов СМО (случай занятости обоих каналов).
Статистические испытания продолжаются в течение временного интервала . Очевидно, что любое превышение времени tmax влечет за собой сброс заявки в выходящий поток Вых ПТ. Так на рис. 3 заявка №10, пришедшая в систему в момент t10 , не успевает обслужиться до момента tmax , так как t10+Тобсл.>tmax . Следовательно, она не принимается свободным каналом К1 на обслуживание и сбрасывается в Вых ПТ, получая отказ.


Рис. 3

Из временных диаграмм видно, что необходимо научиться моделировать интервалы Т i . Применим метод обратных функций. Поскольку случайная величина Тi распределена по показательному закону с параметром λ =5, то плотность распределения имеет вид f (τ)=5е-5τ . Тогда значение F(Ti) функции распределения вероятностей определяется интегралом

.

Известно, что область значений функции распределения F (T ) есть отрезок . Выбираем из таблицы случайных чисел число и определяем Т i из равенства , откуда . Однако, если . Поэтому можно сразу получать из таблицы случайных чисел реализации . Следовательно,
е-5Т i = ri , или –5Т i = lnri , откуда . Результаты вычислений удобно заносить в таблицу.
Для проведения испытания №1 были взяты случайные числа из приложения 2, начиная с первого числа первой строки. Далее выборка осуществлялась по строкам. Проведем еще два испытания.
Обратите внимание на выборку случайных чисел из таблицы приложения 2, если в испытании №1 последнее случайное число для заявки №16 было 0,37 (первое случайное число во второй строке), то испытание №2 начинается со следующего за ним случайного числа 0,54. Испытание №2 содержит последним случайное число 0,53 (пятое число в третьей строке). Следовательно, третье испытание начнется с числа 0,19. Вообще в пределах одной серии испытаний случайные числа из таблицы выбираются без пропусков и вставок по определенному порядку, например, по строкам.

Таблица 1. ИСПЫТАНИЕ №1

№ зая-вки
i

Сл. число
ri

-ln ri
Тi

Момент поступления заявки
ti=ti-1+Ti

Момент окончания обслужив.
ti+0,50

Счетчик заявок

К1
Таблица 2 ИСПЫТАНИЕ №2

№ зая-вки
i

Сл. число
ri

-ln ri
Т i

Момент поступления заявки
ti=ti-1+Ti

Момент окончания обслужив.
ti+0,50

Счетчик заявок

Таблица №3 ИСПЫТАНИЕ №3

№ зая-вки
i

Сл. число
ri

-ln ri
Т i

Момент поступления заявки
ti=ti-1+Ti

Момент окончания обслужив.
ti+0,50

Счетчик заявок

К1

Таким образом, по результатам трех испытаний число обслуженных заявок составило соответственно: х1 =9, х2 =9, х3 =8. Найдем среднее число обслуженных заявок:

Ответ: среднее число заявок, обслуженных СМО за 4 минуты, равно 8,6(6).

  • Простейший поток и применение практических задач.
  • Нестационарные пуассоновские потоки.
  • Потоки с ограниченными последствиями (потоки Пальма).
  • Потоки восстановления.
  • 1. Введение.

    1.1. Историческая справка.

    Большинство систем, с которыми человек имеет дело, являются стохастическими. Попытка их математического описания с помощью детерминистических моделей приводит к огрублению истинного положения вещей. При решении задач анализа и проектирования таких систем приходится считаться с положением вещей, когда случайность является определяющей для процессов, протекающих в системах. При этом пренебрежение случайностью, попытка “втиснуть” решение перечисленных задач в детерминистические рамки приводит к искажению, к ошибкам в выводах и практических рекомендациях.

    Первые задачи теории систем массового обслуживания (ТСМО) были рассмотрены сотрудником Копенгагенской телефонной компании, датским ученым А.К. Эрлангом (1878- 1929г) в период между 1908 и 1922гг. Эти задачи были вызваны к жизни стремлением упорядочить работу телефонной сети и разработать методы, позволяющие заранее повысить качество обслуживания потребителей в зависимости от числа используемых устройств. Оказалось, что ситуации, возникающие на телефонных станциях, являются типичными не только для телефонной связи. Работа аэродромов, морских и речных портов, магазинов, терминальных классов, электронных вычислительных комплексов, радиолокационных станций и т.д. может быть описана в рамках ТСМО.

    1.2. Примеры систем массового обслуживания. Анализ задач ТСМО.

    Пример 1. Телефонная связь времен Эрланга представляла из себя телефонную станцию, связанную с большим числом абонентов. Телефонистки станции по мере поступления вызовов соединяли телефонные номера между собой.

    Задача: Какое количество телефонисток (при условии их полной занятости) должно работать на станции для того, чтобы потери требований были минимальными.

    Пример 2. Система скорой помощи некоего городского района представляет собой пункт (который принимает требования на выполнение), некоторое количество автомашин скорой помощи и несколько врачебных бригад.

    Задача: Определить количество врачей, вспомогательного персонала, автомашин, для того чтобы время ожидания вызова было для больных оптимальным при условии минимизации затрат на эксплуатацию системы и максимизации качества обслуживания.

    Пример 3. Важной задачей является организация морских и речных перевозок грузов. При этом особое значение имеют оптимальное использование судов и портовых сооружений.

    Задача: Обеспечить определенный объем перевозок при минимальных расходах. При этом сократить простои судов при погрузочно-разгрузочных работах.

    Пример 4. Система обработки информации содержит мультиплексный канал и несколько ЭВМ. Сигналы от датчиков поступают на мультиплексный канал, где буферизуются и предварительно обрабатываются. Затем поступают в ту ЭВМ, где очередь минимальна.

    Задача: Обеспечить ускорение обработки сигналов при заданной суммарной длине очереди.

    Пример 5 . На рис 1.1. изображена структурная схема типичной системы массового обслуживания – ремонтного предприятия (например, по ремонту ПЭВМ). Порядок ее работы ясен из схемы и не требует разъяснений.

    рис 1.1.

    Нетрудно привести множество других примеров из самых различных областей деятельности.

    Характерным для таких задач является:

    1. условия “двойной” случайности –
      • случаен момент времени поступления заказа на обслуживание (на телефонную станцию, на пункт скорой помощи, на вход процессора, случаен момент времени прибытия морского судна под погрузку и т.д.);
      • случайна длительность времени обслуживания.

    2)проблема бича нашего времени – очередей: судов перед шлюзами, машин перед прилавками, задач на входе процессоров вычислительного комплекса и т.д.

    А.К. Эрланг обратил внимание на то, что СМО могут быть разделены на два типа, а именно: на системы с ожиданием и системы с потерями. В первом случае – заявка, поступившая на вход системы “ждет” очереди на выполнение, во втором – она из-за занятости канала обслуживания получает отказ и теряется для СМО.

    В дальнейшем мы увидим, что к классическим задачам Эрланга прибавляются новые задачи:

    Реальные системы, с которыми приходится иметь дело на практике, как правило, очень сложны и включают в себя ряд этапов (стадий) обслуживания (рис 1.1.). Причем на каждом этапе может существовать вероятность отказа в выполнении или существует ситуация приоритетного обслуживания по отношению к другим требованиям. При этом отдельные звенья обслуживания могут прекратить свою работу (для ремонта, подналадки и т.д.) или могут быть подключены дополнительные средства. Могут быть такие обстоятельства, когда требования, получившие отказ, вновь возвращаются в систему (подобное может происходить в информационных системах).

    1.3. Понятия, определения, терминология.

    Все СМО имеют вполне определенную структуру, изображенную на рис 1.2

    рис 1.2

    Определения, термины

      • Потоком называют последовательность событий. Поток, состоящий из требований на обслуживание, называют потоком требований.
      • Поток требований, поступающих в обслуживающую систему, называют входящим потоком.
      • Поток требований, которые обслужены, называют выходящим потоком.
      • Совокупность очередей и приборов (каналов) обслуживания называются системой обслуживания.
      • Каждые требования поступают на свой канал, где подвергается операции обслуживания.
      • Каждая СМО имеет определенные правила формирования очереди и правила или дисциплину обслуживания.

    1.4. Классификация СМО.

    1.4.1. По характеру источника требований различают СМО с конечным и бесконечным количеством требований на входе.

    В первом случае в системе циркулирует конечное, обычно постоянное количество требований, которые после завершения обслуживания возвращаются в источник.

    Во втором случае источник генерирует бесконечное число требований.

    Пример 1. Цех с постоянным количеством станков или определенное количество ПЭВМ в терминальном классе, требующих постоянного профилактического осмотра и ремонта.

    Пример 2 . Сеть Internet с бесконечным требованием на входе, любой магазин, парикмахерская и т.д.

    Первый вид СМО называют замкнутой, второй – разомкнутой.

    СМО различают:

    1.4.2. По дисциплине обслуживания:

      1. обслуживание в порядке поступления;
      2. обслуживание в случайном порядке (в соответствии с заданным законом распределения);
      3. обслуживание с приоритетом.

    1.4.3. по характеру организации:

      1. с отказами;
      2. с ожиданиями;
      3. с ограничением ожидания.

    В первом случае заявка получает отказ, когда канал занят. Во втором случае – ставится в очередь и ждет освобождения канала. В третьем случае вводится ограничения на длительность ожидания.

    1.4.4. По количеству единиц обслуживания:

      1. одноканальные;
      2. двухканальные;
      3. многоканальные.

      1.4.5. По числу этапов (фаз) обслуживания - на однофазные и многофазные. (Примером многофазных СМО может служить любая поточная линия).

      1.4.6. По свойствам каналов: на однородные, когда каналы имеют одинаковую характеристику и неоднородные в противном случае.

    1. Одноканальная СМО с отказами.

    Пример. Пусть одноканальная СМО с отказами представляет собой один пост ежедневного обслуживания (ЕО) для мойки автомобилей. Заявка - автомобиль, прибывший в момент, когда пост занят, - получает отказ в обслуживании.

    Интенсивность потока автомобилей = 1,0 (автомобиль в час).

    Средняя продолжительность обслуживания - 1,8 часа.

    Поток автомобилей и поток обслуживания являются простейшими.

    Требуется определить в установившемся режиме предельные значения:

    Относительной пропускной способности q ;

    Абсолютной пропускной способности А ;

    Вероятности отказа P отк .

    Необходимо сравнить фактическую пропускную способность СМО с номинальной , которая была бы, если бы каждый автомобиль обслуживался точно 1,8 часа и автомобили следовали один за другим без перерыва.

    2. Одноканальная СМО с ожиданием

    Характеристика системы

    Ø СМО имеет один канал.

    Ø Входящий поток заявок на обслуживание - простейший поток с интенсивностью.

    Ø Интенсивность потока обслуживания равна m (т. е. в среднем непрерывно занятый канал будет выдавать m обслуженных заявок).

    Ø Длительность обслуживания - случайная величина, подчиненная показательному закону распределения.

    Ø Поток обслуживания является простейшим пуассоновским потоком событий.



    Ø Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

    Граф состояний

    Состояния СМО имеют следующую интерпретацию:

    S 0 - «канал свободен»;

    S 1 - «канал занят» (очереди нет);

    S 2 - «канал занят» (одна заявка стоит в очереди);

    …………………………………………………….

    Sn - «канал занят» (n -1 заявок стоит в очереди);

    SN - «канал занят» (N - 1 заявок стоит в очереди).

    Стационарный процесс в данной системе описывается следующей системой алгебраических уравнений:

    Решением системы уравнений является:

    3. Одноканальная СМО с ограниченной очередью.

    Длина очереди:(N - 1)

    Характеристики системы:

    1. Вероятность отказа в обслуживании системы:

    2. Относительная пропускная способность системы:

    3. Абсолютная пропускная способность системы:

    4. Среднее число находящихся в системе заявок:

    5. Среднее время пребывания заявки в системе:

    6. Средняя продолжительность пребывания клиента (заявки) в очереди:

    7. Среднее число заявок (клиентов) в очереди (длина очереди):

    Пример.

    Специализированный пост диагностики представляет собой одноканальную СМО.

    Число стоянок для автомобилей, ожидающих проведения диагностики, ограниченно и равно 3 [(N - 1) = 3]. Если все стоянки заняты, т. е. в очереди уже находится три автомобиля, то очередной автомобиль, прибывший на диагностику, в очередь на обслуживание не становится.

    Поток автомобилей, прибывающих на диагностику, распределен по закону Пуассона и имеет интенсивность 0,85 (автомобиля в час).

    Время диагностики автомобиля распределено по показательному закону и в среднем равно 1,05 час.

    4. Одноканальная СМО с ожиданием

    без ограничения на длину очереди

    Условия функционирования СМО остаются без изменений с учетом того, что N .

    Стационарный режим функционирования такой СМО существует:

    для любого n = 0, 1, 2, ... и когда λ < μ .

    Система уравнений, описывающих работу СМО:

    Решение системы уравнений имеет вид:


    2. Средняя продолжительность пребывания клиента в системе:

    3. Среднее число клиентов в очереди на обслуживании:

    4. Средняя продолжительность пребывания клиента в очереди:

    Пример.

    Специализированный пост диагностики представляет собой одноканальную СМО. Число стоянок для автомобилей, ожидающих проведения диагностики, не ограниченно. Поток автомобилей, прибывающих на диагностику, распределен по закону Пуассона и имеет интенсивность λ = 0,85 (автомобиля в час). Время диагностики автомобиля распределено по показательному закону и в среднем равно 1,05 час.

    Требуется определить вероятностные характеристики поста диагностики, работающего в стационарном режиме.

    В результате решения задачи необходимо определить финальные значения следующих вероятностных характеристик:

    ü вероятности состояний системы (поста диагностики);

    ü среднее число автомобилей, находящихся в системе (на обслуживании и в очереди);

    ü среднюю продолжительность пребывания автомобиля в системе (на обслуживании и в очереди);

    ü среднее число автомобилей в очереди на обслуживании;

    ü среднюю продолжительность пребывания автомобиля в очереди.

    1. Параметр потока обслуживания и приведенная интенсивность потока автомобилей:

    μ = 0,952; ψ = 0,893.

    2. Предельные вероятности состояния системы:

    P 0 (t ) определяет долю времени, в течение которого пост диагностики вынужденно бездействует (простаивает). В примере эта доля составляет 10,7%, так как P 0 (t ) = 0,107.

    3. Среднее число автомобилей, находящихся в системе

    (на обслуживании и в очереди):


    4. Средняя продолжительность пребывания клиента в системе

    5. Среднее число автомобилей в очереди на обслуживание:

    6. Средняя продолжительность пребывания автомобиля в очереди:

    7. Относительная пропускная способность системы:

    q = 1, т. е. каждая заявка, пришедшая в систему, будет обслужена.

    8. Абсолютная пропускная способность:

    Презентационное оформление материала представлено в файле «ТМО»

    Вопросы и задачи

    (по Афанасьеву М.Ю. )

    Вопрос 1. Одна работница обслуживает тридцать ткацких станков, обеспечивая их запуск после разрыва нити. Модель такой системы массового обслуживания можно охарактеризовать как:

    1) многоканальную однофазовую с ограниченной популяцией;

    2) одноканальную однофазовую с неограниченной популяцией;

    3) одноканальную многофазовую с ограниченной популяцией;

    4) одноканальную однофазовую с ограниченной популяцией;

    5) многоканальную однофазовую с неограниченной популяцией.

    Вопрос 2. В теории массового обслуживания для описания простейшего потока заявок, поступающих на вход системы, используется распределение вероятностей:

    1) нормальное;

    2) экспоненциальное;

    3) пуассоновское;

    4) биномиальное;

    Вопрос 3. В теории массового обслуживания предполагается, что количество заявок в популяции является:

    1) фиксированным или переменным;

    2) ограниченным или неограниченным;

    3) известным или неизвестным;

    4) случайным или детерминированным;

    5) ничто из вышеуказанного не является верным.

    Вопрос 4. Двумя основными параметрами, которые определяют конфигурацию системы массового обслуживания, являются:

    1) темп поступления и темп обслуживания;

    2) длина очереди и правило обслуживания;

    3) распределение времени между заявками и распределение времени обслуживания;

    4) число каналов и число фаз обслуживания;

    5) ничто из вышеуказанного не является верным.

    Вопрос 5. В теории массового обслуживания для описания времени, затрачиваемого на обслуживание заявок, обычно используется распределение вероятностей:

    1) нормальное;

    2)экспоненциальное;

    3) пуассоновское;

    4) биномиальное;

    5) ничто из вышеуказанного не является верным.

    Вопрос 6. Ремонт вышедших из строя компьютеров на эконо­мическом факультете осуществляют три специалиста, работающие одновременно и независимо друг от друга. Модель такой системы массового обслуживания можно охарактеризовать как:

    1) многоканальную с ограниченной популяцией;

    2) одноканальную с неограниченной популяцией;

    3) одноканальную с ограниченной популяцией;

    4) одноканальную с ограниченной очередью;

    5) многоканальную с неограниченной популяцией.

    Ответы на вопросы : 1 -4, 2 - 3, 3 -2, 4 -4, 5 -2, 6 -1.


    СЕТЕВОЕ ПЛАНИРОВАНИЕ И УПРАВЛЕНИЕ

    Системы сетевого планирования и управления (СПУ) представляют особую разновидность систем организованного управления, предназначенных для регулирования производственной деятельности коллективов. Как и в других системах этого класса, «объектом управления» в системах СПУ является коллектив исполнителей, располагающих определенными ресурсами: людскими, материальными, финансовыми. Однако, данным системам присущ ряд особенностей, так как их методологическую основу составляют методы исследования операций, теория ориентированных графов и некоторые разделы теории вероятностей и математической статистики. Необходимым свойством системы планирования и управления является также способность оценивать текущее состояние, предсказывать дальнейший ход работ и таким образом воздействовать на ход подготовки и производства, чтобы весь комплекс работ был выполнен в заданные сроки и с наименьшими затратами.

    В настоящее время модели и методы СПУ широко используются при планировании и осуществлении строительно-монтажных работ, планировании торговой деятельности, составлении бухгалтерских отчетов, разработке торгово-финансового плана и т.д.

    Диапазон применения СПУ весьма широк: от задач, касающихся деятельности отдельных лиц, до проектов, в которых участвуют сотни организаций и десятки тысяч людей (например, разработка и создание крупного территориально-промышленного комплекса).

    Для того чтобы составить план работ по осуществлению больших и сложных проектов, состоящих из тысяч отдельных исследований и операций, необходимо описать его с помощью некоторой математической модели. Таким средством описания проектов (комплексов) является сетевая модель.