Уравнение вида: называется линейным дифференциальным уравнением высшего порядка, гдеa 0 ,а 1 ,…а n -функции переменной х или константы, причём a 0 ,а 1 ,…а n и f(x) считаются непрерывными.

Если a 0 =1(если
то на него можно разделить)
уравнение примет вид:

Если
уравнение неоднородное.

уравнение однородное.

Линейные однородные дифференциальные уравнения порядка n

Уравнение вида: называются линейными однородными дифференциальными уравнениями порядкаn.

Для этих уравнений справедливы следующие теоремы:

Теорема 1: Если
- решение , то сумма
- тоже решение

Доказательство: подставим сумму в

Т.к производная любого порядка от суммы равна суме производных, то можно перегруппироватся, раскрыв скобки:

т.к y 1 и y 2 – решение.

0=0(верно)
сумма тоже решение.

теорема доказана.

Теорема 2: Если y 0 -решение , то
- тоже решение.

Доказательство: Подставим
в уравнение

т.к С выносится за знак производной, то

т.к решение, 0=0(верно)
Сy 0 -тоже решение.

теорема доказана.

Следствие из Т1 и Т2: если
- решения (*)
линейеая комбинация-тоже решение (*).

Линейно независимые и линейно зависимые системы функций. Определитель Вронского и его свойства

Определение: Система функций
- называется линейно независимой, если линейная комбинациякоэффициенты
.

Определение: Систему функций
- называют линейно зависимой, еслии есть коэффициенты
.

Возьмём систему двух линейно зависимых функций
т.к
или
- условие линейной независимости двух функций.

1)
линейно независимы

2)
линейно зависимы

3)линейно зависимы

Определение: Дана система функций
- функций переменной х.

Определитель
-определитель Вронского для системы функций
.

Для системы двух функций определитель Вронского выглядит следующим образом:

Свойства определителя Вронского:


Теорема: Об общем решении линейного однородного дифференциального уравнения 2 порядка.

Если y 1 и y 2 – линейно независимые решения линейного однородного дифференциального уравнения 2 порядка, то

общее решение имеет вид:

Доказательство:
- решение по следствию из Т1 и Т2.

Если даны начальные условия то идолжны находится однозначно.

- начальные условия.

Составим систему для нахождения и. Для этого подставим начальные условия в общее решение.

определитель этой системы:
- определитель Вронского, вычисленный в точке х 0

т.к илинейно независимы
(по 2 0)

т.к определитель системы не равен 0, то система имеет единственное решение и инаходятся из системы однозначно.

Общее решение линейного однородного дифференциального уравнения порядка n

Можно показать что уравнение имеет n линейно независимых решений

Определение: n линейно независимых решений
линейного однородного дифференциального уравнения порядкаn называется фундаментальной системой решения.

Общее решение линейного однородного дифференциального уравнения порядкаn , т.е (*) – линейная комбинация фундаментальной системы решений:

Где
- фундаментальная система решения.

Линейные однородные дифференциальные уравнения 2 порядка с постоянными коэффициентами

Это уравнения вида:
, гдеp и g – числа(*)

Определение: Уравнение
- называетсяхарактеристическим уравнением дифференциального уравнения (*) – обычное квадратное уравнение, решение которого зависит от D, возможны следующие случаи:

1)D>0
- два действительных различных решения.

2)D=0
- один действительный корень кратности 2.

3)D<0
- два комплексно сопряжённых корня.

Для каждого из этих случаев укажем фундаментальную систему решений, составленную из 2 функций и.

Будем показывать что:

1) и- ЛНЗ

2) и- решение (*)

Рассмотрим 1 случай D>0
- 2 действительных различных корня.

Х
арактеристическое уравнение:

В качестве ФСР возьмём:

а) покажем ЛНЗ

б) покажем, что - решение (*), подставим



+p
+g
=0

верное равенство

решение (*)

аналогично показывается для y 2 .

Вывод:
- ФСР (*)
общее решение

Рассмотрим 2случай: D=0
- 1 действительный корень кратности 2.

В качестве ФСР возьмём:

ЛНЗ:
ЛНЗ есть.

-решение уравнения (см. 1 случай). Покажем что
- решение.

подставим в ДУ

-решение.

Вывод: ФСР

Пример:

3 случай : D<0
- 2 комплексно сопряжённых корня.

подставим
в характ. уравнение

комплексное число равно 0, когда действительная и мнимая часть равны 0.

- будем использовать.

Покажем, что
- образуют ФСР.

А)ЛНЗ:

Б)
-решение ДУ

верное равенство
- решение ДУ.

Аналогично показывается, что тоже решение.

Вывод: ФСР:

Общее решение:

Если заданы н.у.

- то сначала находят общее решение
, его производную:
, а потом в эту систему подставляют н.у и находяти.

Н.у:

Уравнения, решающиеся непосредственным интегрированием

Рассмотрим дифференциальное уравнение следующего вида:
.
Интегрируем n раз.
;
;
и так далее. Так же можно использовать формулу:
.
См. Дифференциальные уравнения, решающиеся непосредственным интегрированием > > >

Уравнения, не содержащие зависимую переменную y в явном виде

Подстановка приводит к понижению порядка уравнения на единицу. Здесь - функция от .
См. Дифференциальные уравнения высших порядков, не содержащие функцию в явном виде > > >

Уравнения, не содержащие независимую переменную x в явном виде


.
Считаем, что является функцией от . Тогда
.
Аналогично для остальных производных. В результате порядок уравнения понижается на единицу.
См. Дифференциальные уравнения высших порядков, не содержащие переменную в явном виде > > >

Уравнения, однородные относительно y, y′, y′′, ...

Для решения этого уравнения, делаем подстановку
,
где - функция от . Тогда
.
Аналогично преобразуем производные и т.д. В результате порядок уравнения понижается на единицу.
См. Однородные относительно функции и ее производных дифференциальные уравнения высших порядков > > >

Линейные дифференциальные уравнения высших порядков

Рассмотрим линейное однородное дифференциальное уравнение n-го порядка :
(1) ,
где - функции от независимой переменной . Пусть есть n линейно независимых решений этого уравнения. Тогда общее решение уравнения (1) имеет вид:
(2) ,
где - произвольные постоянные. Сами функции образуют фундаментальную систему решений.
Фундаментальная система решений линейного однородного уравнения n-го порядка - это n линейно независимых решений этого уравнения.

Рассмотрим линейное неоднородное дифференциальное уравнение n-го порядка :
.
Пусть есть частное (любое) решение этого уравнения. Тогда общее решение имеет вид:
,
где - общее решение однородного уравнения (1).

Линейные дифференциальные уравнения с постоянными коэффициентами и приводящиеся к ним

Линейные однородные уравнения с постоянными коэффициентами

Это уравнения вида:
(3) .
Здесь - действительные числа. Чтобы найти общее решение этого уравнения, нам нужно найти n линейно независимых решений , которые образуют фундаментальную систему решений. Тогда общее решение определяется по формуле (2):
(2) .

Ищем решение в виде . Получаем характеристическое уравнение :
(4) .

Если это уравнение имеет различные корни , то фундаментальная система решений имеет вид:
.

Если имеется комплексный корень
,
то существует и комплексно сопряженный корень . Этим двум корням соответствуют решения и , которые включаем в фундаментальную систему вместо комплексных решений и .

Кратным корням кратности соответствуют линейно независимых решений: .

Кратным комплексным корням кратности и их комплексно сопряженным значениям соответствуют линейно независимых решений:
.

Линейные неоднородные уравнения со специальной неоднородной частью

Рассмотрим уравнение вида
,
где - многочлены степеней s1 и s2 ; - постоянные.

Сначала мы ищем общее решение однородного уравнения (3). Если характеристическое уравнение (4) не содержит корень , то ищем частное решение в виде:
,
где
;
;
s - наибольшее из s1 и s2 .

Если характеристическое уравнение (4) имеет корень кратности , то ищем частное решение в виде:
.

После этого получаем общее решение:
.

Линейные неоднородные уравнения с постоянными коэффициентами

Здесь возможны три способа решения.

1) Метод Бернулли .
Сначала находим любое, отличное от нуля, решение однородного уравнения
.
Затем делаем подстановку
,
где - функция от переменной x . Получаем дифференциальное уравнение для u , которое содержит только производные от u по x . Выполняя подстановку , получаем уравнение n - 1 - го порядка.

2) Метод линейной подстановки .
Сделаем подстановку
,
где - один из корней характеристического уравнения (4). В результате получим линейное неоднородное уравнение с постоянными коэффициентами порядка . Последовательно применяя такую подстановку, приведем исходное уравнение к уравнению первого порядка.

3) Метод вариации постоянных Лагранжа .
В этом методе мы сначала решаем однородное уравнение (3). Его решение имеет вид:
(2) .
Далее мы считаем, что постоянные являются функциями от переменной x . Тогда решение исходного уравнения имеет вид:
,
где - неизвестные функции. Подставляя в исходное уравнение и накладывая на некоторые ограничения, получаем уравнения, из которых можно найти вид функций .

Уравнение Эйлера

Оно сводится к линейному уравнению с постоянными коэффициентами подстановкой:
.
Однако, для решения уравнения Эйлера, делать такую подстановку нет необходимости. Можно сразу искать решение однородного уравнения в виде
.
В результате получим такие же правила, как и для уравнения с постоянными коэффициентами, в которых вместо переменной нужно подставить .

Использованная литература:
В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Часто одно лишь упоминание дифференциальных уравнений вызывает у студентов неприятное чувство. Почему так происходит? Чаще всего потому, что при изучении основ материала возникает пробел в знаниях, из-за которого дальнейшее изучение дифуров становиться просто пыткой. Ничего не понятно, что делать, как решать, с чего начать?

Однако мы постараемся вам показать, что дифуры – это не так сложно, как кажется.

Основные понятия теории дифференциальных уравнений

Со школы нам известны простейшие уравнения, в которых нужно найти неизвестную x. По сути дифференциальные уравнения лишь чуточку отличаются от них – вместо переменной х в них нужно найти функцию y(х) , которая обратит уравнение в тождество.

Дифференциальные уравнения имеют огромное прикладное значение. Это не абстрактная математика, которая не имеет отношения к окружающему нас миру. С помощью дифференциальных уравнений описываются многие реальные природные процессы. Например, колебания струны, движение гармонического осциллятора, посредством дифференциальных уравнений в задачах механики находят скорость и ускорение тела. Также ДУ находят широкое применение в биологии, химии, экономике и многих других науках.

Дифференциальное уравнение (ДУ ) – это уравнение, содержащее производные функции y(х), саму функцию, независимые переменные и иные параметры в различных комбинациях.

Существует множество видов дифференциальных уравнений: обыкновенные дифференциальные уравнения, линейные и нелинейные, однородные и неоднородные, дифференциальные уравнения первого и высших порядков, дифуры в частных производных и так далее.

Решением дифференциального уравнения является функция, которая обращает его в тождество. Существуют общие и частные решения ДУ.

Общим решением ДУ является общее множество решений, обращающих уравнение в тождество. Частным решением дифференциального уравнения называется решение, удовлетворяющее дополнительным условиям, заданным изначально.

Порядок дифференциального уравнения определяется наивысшим порядком производных, входящих в него.

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения – это уравнения, содержащие одну независимую переменную.

Рассмотрим простейшее обыкновенное дифференциальное уравнение первого порядка. Оно имеет вид:

Решить такое уравнение можно, просто проинтегрировав его правую часть.

Примеры таких уравнений:

Уравнения с разделяющимися переменными

В общем виде этот тип уравнений выглядит так:

Приведем пример:

Решая такое уравнение, нужно разделить переменные, приведя его к виду:

После этого останется проинтегрировать обе части и получить решение.

Линейные дифференциальные уравнения первого порядка

Такие уравнения имеют вид:

Здесь p(x) и q(x) – некоторые функции независимой переменной, а y=y(x) – искомая функция. Приведем пример такого уравнения:

Решая такое уравнение, чаще всего используют метод вариации произвольной постоянной либо представляют искомую функцию в виде произведения двух других функций y(x)=u(x)v(x).

Для решения таких уравнений необходима определенная подготовка и взять их “с наскока” будет довольно сложно.

Пример решения ДУ с разделяющимися переменными

Вот мы и рассмотрели простейшие типы ДУ. Теперь разберем решение одного из них. Пусть это будет уравнение с разделяющимися переменными.

Сначала перепишем производную в более привычном виде:

Затем разделим переменные, то есть в одной части уравнения соберем все "игреки", а в другой – "иксы":

Теперь осталось проинтегрировать обе части:

Интегрируем и получаем общее решение данного уравнения:

Конечно, решение дифференциальных уравнений – своего рода искусство. Нужно уметь понимать, к какому типу относится уравнение, а также научиться видеть, какие преобразования нужно с ним совершить, чтобы привести к тому или иному виду, не говоря уже просто об умении дифференцировать и интегрировать. И чтобы преуспеть в решении ДУ, нужна практика (как и во всем). А если у Вас в данный момент нет времени разбираться с тем, как решаются дифференциальные уравнения или задача Коши встала как кость в горле или вы не знаете, обратитесь к нашим авторам. В сжатые сроки мы предоставим Вам готовое и подробное решение, разобраться в подробностях которого Вы сможете в любое удобное для Вас время. А пока предлагаем посмотреть видео на тему "Как решать дифференциальные уравнения":

Дифференциальные уравнения высших порядков

    Основная терминология дифференциальных уравнений высших порядков (ДУ ВП).

Уравнение вида , где n >1 (2)

называется дифференциальным уравнением высшего порядка, т. е. n -го порядка.

Область определения ДУ, n -го порядка есть область .

В данном курсе будут рассматриваться ДУ ВП следующих видов:

Задача Коши ДУ ВП:

Пусть дано ДУ ,
и начальные условия н/у: числа .

Требуется найти непрерывную и n раз дифференцируемую функцию
:

1)
является решением данного ДУ на , т. е.
;

2) удовлетворяет заданным, начальным условиям: .

Для ДУ второго порядка геометрическая интерпретация решения задачи заключается в следующем: ищется интегральная кривая, проходящая через точку (x 0 , y 0 ) и касающаяся прямой с угловым коэффициентом k = y 0 ́ .

Теорема существования и единственности (решения задачи Коши для ДУ (2)):

Если 1)
непрерывна (по совокупности (n +1) аргументов) в области
; 2)
непрерывны (по совокупности аргументов
) в , то ! решение задачи Коши для ДУ , удовлетворяющее заданным начальным условиям н/у: .

Область называется областью единственности ДУ.

Общее решение ДУ ВП (2) – n -параметрическая функция ,
, где
– произвольные постоянные, удовлетворяющая следующим требованиям:

1)

– решение ДУ (2) на ;

2) н/у из области единственности !
:
удовлетворяет заданным начальным условиям.

Замечание .

Соотношение вида
, неявно определяющее общее решение ДУ (2) на называется общим интегралом ДУ.

Частное решение ДУ (2) получается из его общего решения при конкретном значении .

    Интегрирование ДУ ВП.

Дифференциальные уравнения высших порядков, как правило, не решаются точными аналитическими методами.

Выделим некоторого вида ДУВП, допускающих понижения порядка и сводящихся к квадратурам. Сведем в таблицу эти виды уравнений и способы понижения их порядка.

ДУ ВП, допускающие понижения порядка

Способ понижения порядка

ДУ неполное, в нём отсутствуют
. Например,

И т.д. После n кратного интегрирования получится общее решение ДУ.

Уравнение неполное; в нём явно не содержится искомая функция
и её
первых производных.

Например,

Подстановка

понижает порядок уравнения на k единиц.

Неполное уравнение; в нём явно не содержится аргумента искомой функции . Например,

Подстановка

понижается порядок уравнения на единицу.

Уравнение в точных производных, оно может быть полным и неполным. Такое уравнение можно преобразовать к виду (*) ́= (*)́, где правая и левая части уравнения есть точные производные некоторых функций.

Интегрирование правой и левой части уравнения по аргументу понижает порядок уравнения на единицу.

Подстановка

понижает порядок уравнения на единицу.

Определение однородной функции:

Функция
называется однородной по переменным
, если


в любой точке области определения функции
;

– порядок однородности.

Например, – функция однородная 2-го порядка относительно
, т.е. .

Пример 1 :

Найти общее решение ДУ
.

ДУ 3-го порядка, неполное, не содержит явно
. Последовательно интегрируем уравнение три раза.

,

– общее решение ДУ.

Пример 2 :

Решить задачу Коши для ДУ
при

.

ДУ второго порядка, неполное, не содержит явно .

Подстановка
и ее производная
понизит порядок ДУ на единицу.

. Получили ДУ первого порядка – уравнение Бернулли. Для решения этого уравнения применим подстановку Бернулли:

,

и подставим в уравнение.

На этом этапе решим задачу Коши для уравнения
:
.

– уравнение первого порядка с разделяющимися переменными.

В последнее равенство подставляем начальные условия:

Ответ:
– решение задачи Коши, удовлетворяющее начальным условиям.

Пример 3:

Решить ДУ.

– ДУ 2-го порядка, неполное, не содержит явно переменную , и поэтому допускает понижение порядка на единицу с помощью подстановки или
.

Получим уравнение
(пусть
).

– ДУ 1-го порядка с разделяющими переменными. Разделим их.

– общий интеграл ДУ.

Пример 4 :

Решить ДУ.

Уравнение
есть уравнение в точных производных. Действительно,
.

Проинтегрируем левую и правую части по , т. е.
или . Получили ДУ 1-го порядка с разделяющимися переменными т. е.
– общий интеграл ДУ.

Пример5 :

Решить задачу Коши для
при .

ДУ 4-го порядка, неполное, не содержит явно
. Заметив, что это уравнение в точных производных, получим
или
,
. Подставим в это уравнение начальные условия:
. Получим ДУ
3-го порядка первого вида (см. таблицу). Проинтегрируем его три раза, и после каждого интегрирования в уравнение будем подставлять начальные условия:

Ответ:
- решение задачи Коши исходного ДУ.

Пример 6 :

Решить уравнение.

– ДУ 2-го порядка, полное, содержит однородность относительно
. Подстановка
понизит порядок уравнения. Для этого приведем уравнение к виду
, разделив обе части исходного уравнения на . И продифференцируем функцию p :

.

Подставим
и
в ДУ:
. Это уравнение 1-го порядка с разделяющимися переменными .

Учитывая, что
, получим ДУ или
– общее решение исходного ДУ.

Теория линейных дифференциальных уравнений высшего порядка.

Основная терминология.

– НЛДУ -го порядка, где – непрерывные функции на некотором промежутке .

Называется интервалом непрерывности ДУ (3).

Введем (условный) дифференциальный оператор -го порядка

При действии его на функцию , получим

Т. е. левую часть линейного ДУ -го порядка.

Вследствие этого ЛДУ можно записать

Линейные свойства оператора
:

1) – свойство аддитивности

2)
– число – свойство однородности

Свойства легко проверяются, т. к. производные этих функций обладают аналогичными свойствами (конечная сумма производных равна сумме конечного числа производных; постоянный множитель можно вынести за знак производной).

Т. о.
– линейный оператор.

Рассмотрим вопрос существования и единственности решения задачи Коши для ЛДУ
.

Разрешим ЛДУ относительно
: ,
, – интервал непрерывности.

Функция непрерывная в области , производные
непрерывны в области

Следовательно, область единственности , в которой задача Коши ЛДУ (3) имеет единственное решение и зависит только от выбора точки
, все остальные значения аргументов
функции
можно брать произвольными.

Общая теория ОЛДУ .

– интервал непрерывности.

Основные свойства решений ОЛДУ:

1. Свойство аддитивности

(
– решение ОЛДУ (4) на )
(
– решение ОЛДУ (4) на ).

Доказательство:

– решение ОЛДУ (4) на

– решение ОЛДУ (4) на

Тогда

2. Свойство однородности

( – решение ОЛДУ (4) на ) (
( – числовое поле))

– решение ОЛДУ (4) на .

Доказывается аналогично.

Свойства аддитивности и однородности называются линейными свойствами ОЛДУ (4).

Следствие:

(
– решение ОЛДУ (4) на )(

– решение ОЛДУ (4) на ).

3. ( – комплексно-значное решение ОЛДУ (4) на )(
– действительно-значные решения ОЛДУ (4) на ).

Доказательство:

Если – решение ОЛДУ (4) на , то при подстановке в уравнение обращает его в тождество, т. е.
.

В силу линейности оператора , левую часть последнего равенства можно записать так:
.

Это значит, что , т. е. – действительно-значные решения ОЛДУ (4) на .

Последующие свойства решений ОЛДУ связаны с понятием “линейная зависимость ”.

Определение линейной зависимости конечной системы функций

Система функций называется линейно зависимой на , если найдётся нетривиальный набор чисел
такой, что линейная комбинация
функций
с этими числами тождественно равна нулю на , т. е.
.n , что неверно. Теорема доказана.дифференциальные уравнения высших порядков (4 час...