Так как от него зависит существование жизни, комфорт и безопасность всех организмов. Показатели газов в смеси являются определяющими для изучения проблемных участков или экологически благоприятных зон.

Общие сведения

Под термином «атмосфера» понимают газовый слой, который окутывает нашу планету и многие другие небесные тела во Вселенной. Он образует оболочку, которая возвышается над Землей на несколько сотен километров. В составе присутствуют разнообразные газы, основным из которых является кислород.

Атмосфера характеризуется:

  • Неоднородностью с физической точки зрения.
  • Повышенной динамичностью.
  • Зависимостью от биологических факторов (высокая уязвимость в случае неблагоприятных явлений).

Основное влияние оказывают на состав и процессы его изменяющие, живые существа (включая, микроорганизмы). Эти процессы продолжаются с момента возникновения атмосферы – несколько миллиардов лет. Защитная оболочка планеты соприкасается с такими образованиями, как литосфера и гидросфера, верхние же границы определить с высокой точность сложно, ученые могут назвать только примерные значения. Атмосфера переходит в межпланетное пространство в экзосфере – на высоте
500-1000 км от поверхности нашей планеты, некоторые источники называют цифру в 3000 км.

Значение атмосферы для жизни на земле велико, так как она предохраняет планету от столкновения с космическими телами, обеспечивает оптимальные показатели для формирования и развития жизни в различных ее формах.
Состав защитной оболочки:

  • Азот – 78%.
  • Кислород – 20,9%.
  • Смесь газовая – 1,1% (эта часть образована такими веществами, как озон, аргон, неон, гелий, метан, криптон, водород, ксенон, углекислый газ, водяные пары).

Газовая смесь выполняет важную функцию – поглощение излишнего количества солнечной энергии. Состав атмосферы изменяются в зависимости от высоты – на высоте 65 км от поверхности Земли азота в ней будет содержаться
уже 86%, кислорода – всего 19%.

Составные элементы атмосферы

Разнообразный состав атмосферы Земли позволяет ей выполнять различные функции и оберегать жизнь на планете. Основные его элементы:

  • Углекислый газ (CO₂) – является неотъемлемым компонентом, задействованным в процессе питания растений (фотосинтезе). Выделяется он в атмосферу благодаря дыханию всех живых организмов, гниению и горению органических веществ. Если углекислый газ исчезнет, то вместе с ним перестанут существовать и растения.
  • Кислород (O₂) – обеспечивает оптимальную среду для жизни всех организмов на планете, обязателен для дыхания. С его исчезновением прекратиться жизнь для 99% организмов на планете.
  • Озон (O 3) – газ, который выступает естественным поглотителем ультрафиолета, выделяемого солнечным излучением. Его излишки негативно влияют на живые организмы. Газ формирует особый слой в атмосфере -озоновый экран. Под влияние внешних условий и деятельности человека он начинает постепенно разрушаться, поэтому важно проводить мероприятия для восстановления озонового слоя нашей планеты, чтобы сохранить на ней жизнь.

Также в составе атмосферы присутствуют водяные пары – они определяют влажность воздуха. Процентное содержание этого компонента зависит от разных факторов. Влияние оказывают:

  • Показатели температуры воздуха.
  • Расположение местности (территория).
  • Сезонность.

Оказывает влияние на количество водяного пара и температура – если она низкая, то концентрация не превышает 1%, при повышенной – достигает показателей в 3-4%.
Дополнительно в составе земной атмосферы присутствуют твердые и жидкие примеси – сажа, пепел, морская соль, разнообразные микроорганизмы, пыль, капли воды.

Атмосфера: ее слои

Необходимо знать строение атмосферы земли по слоям, чтобы иметь полное представление о том, чем ценна для нас эта газовая оболочка. Они выделяются потому, что состав и плотность газовой смеси на разных высотах неодинаковы. Каждый из слоев отличается по химическому составу и выполняемым функциям. Расположить атмосферные слои земли по порядку следует так:

Тропосфера – располагается ближе остальных к земной поверхности. Высоты этого слоя достигают 16-18 км в тропических зонах и 9 км в среднем над полюсами. В этом слое концентрируется до 90% всего водяного пара. Именно в тропосфере происходит процесс образования облаков. Также здесь наблюдаются движение воздуха, турбулентность и конвекция. Температурные показатели различны и составляют от +45 до -65 градусов - в тропиках и на полюсах, соответственно. С повышением на 100 метров наблюдается понижение температуры на 0,6 градуса. Именно тропосфера по причине скопления водяного пара и воздуха отвечает за циклонические процессы. Соответственно, правильным ответом на вопрос, как называется слой атмосферы земли в котором развиваются циклоны и антициклоны будет название этого атмосферного слоя.

Стратосфера – этот слой располагается на высоте 11-50 км от поверхности планеты. В нижней его зоне температурные показатели стремятся к значениям в -55. В стратосфере имеется зона инверсии – граница между этим слоем и следующим, называемым мезосферой. Температурные показатели достигают значений в +1 градус. Самолеты летают в нижней зоне стратосферы.

Озоновый слой – небольшой по высоте участок на границе между стратосферой и мезосферой, но именно озоновый слой атмосферы предохраняет все живое на земле от действия ультрафиолета. Также он отделяет комфортные и благоприятные условия для существования живых организмов и суровые космические, где невозможно выжить без специальных условий даже бактериям. Образовался он в результате взаимодействия органических компонентов и кислорода, который контактирует с ультрафиолетовым излучением и вступает в фотохимическую реакцию, что позволяет получить газ под названием озон. Так как озон поглощает ультрафиолет, он способствует нагреву атмосферу, поддерживая оптимальные для жизни в ее привычном виде, условия. Соответственно, отвечать на вопрос: слой какого газа защищает землю от космической радиации и чрезмерного солнечного излучения, следует озон.

Рассматривая слои атмосферы по порядку от поверхности земли следует отметить, что следующей идет мезосфера. Она располагается на высоте 50-90 км от поверхности планеты. Температурные показатели – от 0 до -143 градусов (нижняя и верхняя границы). Она защищает Землю от метеоритов, которые сгорают, проходя через
нее – явление свечения воздуха. Давление газов в этой части атмосферы крайне маленькое, что не позволяет изучить мезосферу полностью, так как специальное оборудование, включая спутники или зонды, не могут там работать.

Термосфера – слой атмосферы, который располагается на высоте 100 км над уровнем моря. Это нижняя граница, которая носит название линия Кармана. Ученые условно определили, что здесь начинается космос. Непосредственная толщина термосферы достигает 800 км. Температурные показатели достигают 1800 градусов, но сохранить обшивку космических аппаратов и ракет в целости позволяет незначительная концентрация воздуха. В этом слое земной атмосферы возникает особое
явление - северное сияние – особый вид свечения, который можно наблюдать в некоторых регионах планеты. Появляются они вследствие взаимодействия нескольких факторов - ионизации воздуха и действия на него космического излучения и радиации.

Какой слой атмосферы находится дальше всего от земли – Экзосфера. Здесь находится зона рассеивания воздуха, так как концентрация газов небольшая, в результате чего происходит их постепенный выход за пределы атмосферы. Этот слой располагается на высоте 700 км над поверхностью Земли. Основной элемент, составляющий
этого слоя – водород. В атомарном состоянии можно встретить такие вещества, как кислород или азот, которые будут сильно ионизированы солнечным излучением.
Размеры экзосферы Земли достигают 100 тысяч км от планеты.

Изучая слои атмосферы по порядку от поверхности земли, люди получили много ценной информации, которая помогает в развитии и совершенствовании технологических возможностей. Некоторые факты являются удивительными, но именно их наличие позволило живым организмам успешно развиваться.

Известно, что вес атмосферы составляет более 5 квадриллионов тонн. Слои способны передавать звуки до достижения 100 км от поверхности планеты, выше это свойство исчезает, так как изменяется состав газов.
Атмосферные движения существуют, потому что нагрев Земли различается. Поверхность на полюсах холодная, а ближе к тропикам прогрев увеличивается, на температурные показатели оказывают влияние циклонические вихри, сезоны, время суток. Силу давления атмосферы можно узнать – для этой цели используется барометр. Ученые в результате наблюдений установили, что наличие защитных слоев позволяет не допустить контакта с поверхностью планеты метеоритов общей массой 100 тонн ежедневно.

Интересным фактом является то, что состав воздуха (смесь газов в слоях) оставалась неизменной на протяжении длительного временного промежутка – известно о нескольких сотнях миллионов лет. Значительные изменения происходят в последние столетия – с того момента, как человечество переживает значительный подъем производства.

Давление, оказываемое атмосферой, отражается на самочувствии людей. Нормальными для 90% считаются показатели в 760 мм ртутного столба, такое значение должно возникать при 0 градусов. Нужно учитывать, что это значение справедливо для тех участков земной суши, где уровень моря проходит с ней в одной полосе (без перепадов). Чем больше высота, тем ниже будет давление. Также оно изменяется во время прохождения циклонов, так как изменения происходят не только по вертикали, но и по горизонтали.

Физиологическая зона земной атмосферы составляет 5 км, после прохождения этой отметки у человека начинает проявляться особое состояние - кислородное голодание. При этом процессе у 95% людей наблюдается выраженное снижение работоспособности, также значительно ухудшается самочувствие даже у подготовленного и тренированного человека.

Именно поэтому значение атмосферы для жизни на земле велико – люди и большинство живых организмов не смогут существовать без этой газовой смеси. Благодаря их наличию появилась возможность развития привычной для современного общества жизни на Земле. Необходимо оценивать ущерб, который наносится производственной деятельностью, проводить мероприятия по очистке воздуха, чтобы снизить концентрацию определенных видов газов и привнести те, которых недостаточно для нормального состава. Важно задуматься уже сейчас о дальнейших мерах сохранения и восстановления слоев атмосферы, чтобы сохранить оптимальные условия для будущих поколений.

Атмосфера (от. др.-греч. ἀτμός - пар и σφαῖρα - шар) - газовая оболочка (геосфера), окружающая планету Земля. Внутренняя её поверхность покрывает гидросферу и частично земную кору, внешняя граничит с околоземной частью космического пространства.

Совокупность разделов физики и химии, изучающих атмосферу, принято называть физикой атмосферы. Атмосфера определяет погоду на поверхности Земли, изучением погоды занимается метеорология, а длительными вариациями климата - климатология.

Физические свойства

Толщина атмосферы - примерно 120 км от поверхности Земли. Суммарная масса воздуха в атмосфере - (5,1-5,3)·1018 кг. Из них масса сухого воздуха составляет (5,1352 ±0,0003)·1018 кг, общая масса водяных паров в среднем равна 1,27·1016 кг.

Молярная масса чистого сухого воздуха составляет 28,966 г/моль, плотность воздуха у поверхности моря приблизительно равна 1,2 кг/м3. Давление при 0 °C на уровне моря составляет 101,325 кПа; критическая температура - −140,7 °C (~132,4 К); критическое давление - 3,7 МПа; Cp при 0 °C - 1,0048·103 Дж/(кг·К), Cv - 0,7159·103 Дж/(кг·К) (при 0 °C). Растворимость воздуха в воде (по массе) при 0 °C - 0,0036 %, при 25 °C - 0,0023 %.

За «нормальные условия» у поверхности Земли приняты: плотность 1,2 кг/м3, барометрическое давление 101,35 кПа, температура плюс 20 °C и относительная влажность 50 %. Эти условные показатели имеют чисто инженерное значение.

Химический состав

Атмосфера Земли возникла в результате выделения газов при вулканических извержениях. С появлением океанов и биосферы она формировалась и за счёт газообмена с водой, растениями, животными и продуктами их разложения в почвах и болотах.

В настоящее время атмосфера Земли состоит в основном из газов и различных примесей (пыль, капли воды, кристаллы льда, морские соли, продукты горения).

Концентрация газов, составляющих атмосферу, практически постоянна, за исключением воды (H2O) и углекислого газа (CO2).

Состав сухого воздуха

Азот
Кислород
Аргон
Вода
Углекислый газ
Неон
Гелий
Метан
Криптон
Водород
Ксенон
Закись азота

Кроме указанных в таблице газов, в атмосфере содержатся SO2, NH3, СО, озон, углеводороды, HCl, HF, пары Hg, I2, а также NO и многие другие газы в незначительных количествах. В тропосфере постоянно находится большое количество взвешенных твёрдых и жидких частиц (аэрозоль).

Строение атмосферы

Тропосфера

Её верхняя граница находится на высоте 8-10 км в полярных, 10-12 км в умеренных и 16-18 км в тропических широтах; зимой ниже, чем летом. Нижний, основной слой атмосферы содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция, возникают облака, развиваются циклоны и антициклоны. Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 м

Тропопауза

Переходный слой от тропосферы к стратосфере, слой атмосферы, в котором прекращается снижение температуры с высотой.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11-25 км (нижний слой стратосферы) и повышение её в слое 25-40 км от −56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой.

Стратопауза

Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).

Мезосфера

Мезосфера начинается на высоте 50 км и простирается до 80-90 км. Температура с высотой понижается со средним вертикальным градиентом (0,25-0,3)°/100 м. Основным энергетическим процессом является лучистый теплообмен. Сложные фотохимические процессы с участием свободных радикалов, колебательно возбуждённых молекул и т. д. обусловливают свечение атмосферы.

Мезопауза

Переходный слой между мезосферой и термосферой. В вертикальном распределении температуры имеет место минимум (около -90 °C).

Линия Кармана

Высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом. В соответствии с определением ФАИ, линия Кармана находится на высоте 100 км над уровнем моря.

Граница атмосферы Земли

Термосфера

Верхний предел - около 800 км. Температура растёт до высот 200-300 км, где достигает значений порядка 1500 К, после чего остаётся почти постоянной до больших высот. Под действием ультрафиолетовой и рентгеновской солнечной радиации и космического излучения происходит ионизация воздуха («полярные сияния») - основные области ионосферы лежат внутри термосферы. На высотах свыше 300 км преобладает атомарный кислород. Верхний предел термосферы в значительной степени определяется текущей активностью Солнца. В периоды низкой активности - например, в 2008-2009 гг - происходит заметное уменьшение размеров этого слоя.

Термопауза

Область атмосферы прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура фактически не меняется с высотой.

Экзосфера (сфера рассеяния)

Экзосфера - зона рассеяния, внешняя часть термосферы, расположенная выше 700 км. Газ в экзосфере сильно разрежён, и отсюда идёт утечка его частиц в межпланетное пространство (диссипация).

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до −110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200-250 км соответствует температуре ~150 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000-3500 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разрежёнными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные частицы кометного и метеорного происхождения. Кроме чрезвычайно разрежённых пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы - около 20 %; масса мезосферы - не более 0,3 %, термосферы - менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000-3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу. Гетеросфера - это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера. Граница между этими слоями называется турбопаузой, она лежит на высоте около 120 км.

Другие свойства атмосферы и воздействие на человеческий организм

Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 9 км, хотя примерно до 115 км атмосфера содержит кислород.

Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.

В лёгких человека постоянно содержится около 3 л альвеолярного воздуха. Парциальное давление кислорода в альвеолярном воздухе при нормальном атмосферном давлении составляет 110 мм рт. ст., давление углекислого газа - 40 мм рт. ст., а паров воды - 47 мм рт. ст. С увеличением высоты давление кислорода падает, а суммарное давление паров воды и углекислоты в лёгких остаётся почти постоянным - около 87 мм рт. ст. Поступление кислорода в лёгкие полностью прекратится, когда давление окружающего воздуха станет равным этой величине.

На высоте около 19-20 км давление атмосферы снижается до 47 мм рт. ст. Поэтому на данной высоте начинается кипение воды и межтканевой жидкости в организме человека. Вне герметической кабины на этих высотах смерть наступает почти мгновенно. Таким образом, с точки зрения физиологии человека, «космос» начинается уже на высоте 15-19 км.

Плотные слои воздуха - тропосфера и стратосфера - защищают нас от поражающего действия радиации. При достаточном разрежении воздуха, на высотах более 36 км, интенсивное действие на организм оказывает ионизирующая радиация - первичные космические лучи; на высотах более 40 км действует опасная для человека ультрафиолетовая часть солнечного спектра.

По мере подъёма на всё большую высоту над поверхностью Земли постепенно ослабляются, а затем и полностью исчезают такие привычные для нас явления, наблюдаемые в нижних слоях атмосферы, как распространение звука, возникновение аэродинамической подъёмной силы и сопротивления, передача тепла конвекцией и др.

В разреженных слоях воздуха распространение звука оказывается невозможным. До высот 60-90 км ещё возможно использование сопротивления и подъёмной силы воздуха для управляемого аэродинамического полёта. Но начиная с высот 100-130 км знакомые каждому лётчику понятия числа М и звукового барьера теряют свой смысл: там проходит условная линия Кармана, за которой начинается область чисто баллистического полёта, управлять которым можно, лишь используя реактивные силы.

На высотах выше 100 км атмосфера лишена и другого замечательного свойства - способности поглощать, проводить и передавать тепловую энергию путём конвекции (т. е. с помощью перемешивания воздуха). Это значит, что различные элементы оборудования, аппаратуры орбитальной космической станции не смогут охлаждаться снаружи так, как это делается обычно на самолёте, - с помощью воздушных струй и воздушных радиаторов. На такой высоте, как и вообще в космосе, единственным способом передачи тепла является тепловое излучение.

История образования атмосферы

Согласно наиболее распространённой теории, атмосфера Земли во времени пребывала в трёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера (около четырех миллиардов лет назад). На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углекислым газом, аммиаком, водяным паром). Так образовалась вторичная атмосфера (около трех миллиардов лет до наших дней). Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:

  • утечка легких газов (водорода и гелия) в межпланетное пространство;
  • химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.

Постепенно эти факторы привели к образованию третичной атмосферы, характеризующейся гораздо меньшим содержанием водорода и гораздо большим - азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

Азот

Образование большого количества азота N2 обусловлено окислением аммиачно-водородной атмосферы молекулярным кислородом О2, который стал поступать с поверхности планеты в результате фотосинтеза, начиная с 3 млрд лет назад. Также азот N2 выделяется в атмосферу в результате денитрификации нитратов и других азотсодержащих соединений. Азот окисляется озоном до NO в верхних слоях атмосферы.

Азот N2 вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окисление молекулярного азота озоном при электрических разрядах в малых количествах используется в промышленном изготовлении азотных удобрений. Окислять его с малыми энергозатратами и переводить в биологически активную форму могут цианобактерии (сине-зелёные водоросли) и клубеньковые бактерии, формирующие ризобиальный симбиоз с бобовыми растениями, т. н. сидератами.

Кислород

Состав атмосферы начал радикально меняться с появлением на Земле живых организмов, в результате фотосинтеза, сопровождающегося выделением кислорода и поглощением углекислого газа. Первоначально кислород расходовался на окисление восстановленных соединений - аммиака, углеводородов, закисной формы железа, содержавшейся в океанах и др. По окончании данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами. Поскольку это вызвало серьёзные и резкие изменения многих процессов, протекающих в атмосфере, литосфере и биосфере, это событие получило название Кислородная катастрофа.

В течение фанерозоя состав атмосферы и содержание кислорода претерпевали изменения. Они коррелировали прежде всего со скоростью отложения органических осадочных пород. Так, в периоды угленакопления содержание кислорода в атмосфере, видимо, заметно превышало современный уровень.

Углекислый газ

Содержание в атмосфере СО2 зависит от вулканической деятельности и химических процессов в земных оболочках, но более всего - от интенсивности биосинтеза и разложения органики в биосфере Земли. Практически вся текущая биомасса планеты (около 2,4·1012 тонн) образуется за счет углекислоты, азота и водяного пара, содержащихся в атмосферном воздухе. Захороненная в океане, в болотах и в лесах органика превращается в уголь, нефть и природный газ.

Благородные газы

Источник инертных газов - аргона, гелия и криптона - вулканические извержения и распад радиоактивных элементов. Земля в целом и атмосфера в частности обеднены инертными газами по сравнению с космосом. Считается, что причина этого заключена в непрерывной утечке газов в межпланетное пространство.

Загрязнение атмосферы

В последнее время на эволюцию атмосферы стал оказывать влияние человек. Результатом его деятельности стал постоянный рост содержания в атмосфере углекислого газа из-за сжигания углеводородного топлива, накопленного в предыдущие геологические эпохи. Громадные количества СО2 потребляются при фотосинтезе и поглощаются мировым океаном. Этот газ поступает в атмосферу благодаря разложению карбонатных горных пород и органических веществ растительного и животного происхождения, а также вследствие вулканизма и производственной деятельности человека. За последние 100 лет содержание СО2 в атмосфере возросло на 10 %, причём основная часть (360 млрд тонн) поступила в результате сжигания топлива. Если темпы роста сжигания топлива сохранятся, то в ближайшие 200-300 лет количество СО2 в атмосфере удвоится и может привести к глобальным изменениям климата.

Сжигание топлива - основной источник и загрязняющих газов (СО, NO, SO2). Диоксид серы окисляется кислородом воздуха до SO3, а оксид азота до NO2 в верхних слоях атмосферы, которые в свою очередь взаимодействуют с парами воды, а образующиеся при этом серная кислота Н2SO4 и азотная кислота НNO3 выпадают на поверхность Земли в виде т. н. кислотных дождей. Использование двигателей внутреннего сгорания приводит к значительному загрязнению атмосферы оксидами азота, углеводородами и соединениями свинца (тетраэтилсвинец) Pb(CH3CH2)4.

Аэрозольное загрязнение атмосферы обусловлено как естественными причинами (извержение вулканов, пыльные бури, унос капель морской воды и пыльцы растений и др.), так и хозяйственной деятельностью человека (добыча руд и строительных материалов, сжигание топлива, изготовление цемента и т. п.). Интенсивный широкомасштабный вынос твёрдых частиц в атмосферу - одна из возможных причин изменений климата планеты.

(Visited 156 times, 1 visits today)

Атмосфера - газовая оболочка нашей планеты, которая вращается вместе с Землей. Газ, находящийся в атмосфере, называют воздухом. Атмосфера соприкасается с гидросферой и частично покрывает литосферу. А вот верхние границы определить трудно. Условно принято считать, что атмосфера простирается вверх приблизительно на три тысячи километров. Там она плавно перетекает в безвоздушное пространство.

Химический состав атмосферы Земли

Формирование химического состава атмосферы началось около четырех миллиардов лет назад. Изначально атмосфера состояла лишь из легких газов - гелия и водорода. По мнению ученых исходными предпосылками создания газовой оболочки вокруг Земли стали извержения вулканов, которые вместе с лавой выбрасывали огромное количество газов. В дальнейшем начался газообмен с водными пространствами, с живыми организмами, с продуктами их деятельности. Состав воздуха постепенно менялся и в современном виде зафиксировался несколько миллионов лет назад.

Главные же составляющие атмосферы это азот (около 79%) и кислород (20%). Оставшийся процент (1%) приходится на следующие газы: аргон, неон, гелий, метан, углекислый газ, водород, криптон, ксенон, озон, аммиак, двуокиси серы и азота, закись азота и окись углерода, входящих в этот один процент.

Кроме того, в воздухе содержится водяной пар и твердые частицы (пыльца растений, пыль, кристаллики соли, примеси аэрозолей).

В последнее время ученые отмечают не качественное, а количественное изменение некоторых ингредиентов воздуха. И причина тому - человек и его деятельность. Только за последние 100 лет содержание углекислого газа значительно возросло! Это чревато многими проблемами, самая глобальная из которых - изменение климата.

Формирование погоды и климата

Атмосфера играет важнейшую роль в формировании климата и погоды на Земле. Очень многое зависит от количества солнечных лучей, от характера подстилающей поверхности и атмосферной циркуляции.

Рассмотрим факторы по порядку.

1. Атмосфера пропускает тепло солнечных лучей и поглощает вредную радиацию. О том, что лучи Солнца падают на разные участки Земли под разными углами, знали еще древние греки. Само слово "климат" в переводе с древнегреческого означает "наклон". Так, на экваторе солнечные лучи падают практически отвесно, потому здесь очень жарко. Чем ближе к полюсам, тем больше угол наклона. И температура понижается.

2. Из-за неравномерного нагревания Земли в атмосфере формируются воздушные течения. Они классифицируются по своим размерам. Самые маленькие (десятки и сотни метров) - это местные ветра. Далее следуют муссоны и пассаты, циклоны и антициклоны, планетарные фронтальные зоны.

Все эти воздушные массы постоянно перемещаются. Некоторые из них довольно статичны. Например, пассаты, которые дуют от субтропиков по направлению к экватору. Движение других во многом зависит от атмосферного давления.

3. Атмосферное давление - еще один фактор, влияющий на формирование климата. Это давление воздуха на поверхность земли. Как известно, воздушные массы перемещаются с области с повышенным атмосферным давлением в сторону области, где это давление ниже.

Всего выделено 7 зон. Экватор - зона низкого давления. Далее, по обе стороны от экватора вплоть до тридцатых широт - область высокого давления. От 30° до 60° - опять низкое давление. А от 60° до полюсов - зона высокого давления. Между этими зонами и циркулируют воздушные массы. Те, что идут с моря на сушу, несут дожди и ненастье, а те, что дуют с континентов - ясную и сухую погоду. В местах, где воздушные течения сталкиваются, образуются зоны атмосферного фронта, которые характеризуются осадками и ненастной, ветреной погодой.

Ученые доказали, что от атмосферного давления зависит даже самочувствие человека. По международным стандартам нормальное атмосферное давление - 760 мм рт. столба при температуре 0°C. Этот показатель рассчитан на те участки суши, которые находятся практически вровень с уровнем моря. С высотой давление понижается. Поэтому, например, для Санкт-Петербурга 760 мм рт.ст. - это норма. А вот для Москвы, которая расположена выше, нормальное давление - 748 мм рт.ст.

Давление меняется не только по вертикали, но и по горизонтали. Особенно это чувствуется при прохождении циклонов.

Строение атмосферы

Атмосфера напоминает слоеный пирог. И каждый слой имеет свои особенности.

. Тропосфера - самый близкий к Земле слой. "Толщина" этого слоя изменяется по мере удаления от экватора. Над экватором слой простирается ввысь на 16-18 км, в умеренных зонах - на 10-12км, на полюсах - на 8-10 км.

Именно здесь содержится 80% всей массы воздуха и 90% водяного пара. Здесь образуются облака, возникают циклоны и антициклоны. Температура воздуха зависит от высоты местности. В среднем она понижается на 0,65° C на каждые 100 метров.

. Тропопауза - переходный слой атмосферы. Его высота - от нескольких сотен метров до 1-2 км. Температура воздуха летом выше, чем зимой. Так, например, над полюсами зимой -65° C. А над экватором в любое время года держится -70° C.

. Стратосфера - это слой, верхняя граница которого проходит на высоте 50-55 километров. Турбулентность здесь низкая, содержание водяного пара в воздухе - ничтожное. Зато очень много озона. Максимальная его концентрация - на высоте 20-25 км. В стратосфере температура воздуха начинает повышаться и достигает отметки +0,8° C. Это обусловлено тем, что озоновый слой взаимодействует с ультрафиолетовым излучением.

. Стратопауза - невысокий промежуточный слой между стратосферой и следующей за ней мезосферой.

. Мезосфера - верхняя граница этого слоя - 80-85 километров. Здесь происходят сложные фотохимические процессы с участием свободных радикалов. Именно они обеспечивают то нежное голубое сияние нашей планеты, которое видится из космоса.

В мезосфере сгорает большинство комет и метеоритов.

. Мезопауза - следующий промежуточный слой, температура воздуха в котором минимум -90°.

. Термосфера - нижняя граница начинается на высоте 80 - 90 км, а верхняя граница слоя проходит приблизительно по отметке 800 км. Температура воздуха возрастает. Она может варьироваться от +500° C до +1000° C. В течение суток температурные колебания составляют сотни градусов! Но воздух здесь настолько разрежен, что понимание термина "температура" как мы его представляем, здесь не уместно.

. Ионосфера - объединяет мезосферу, мезопаузу и термосферу. Воздух здесь состоит в основном из молекул кислорода и азота, а также из квазинейтральной плазмы. Солнечные лучи, попадая в ионосферу сильно ионизируют молекулы воздуха. В нижнем слое (до 90 км) степень ионизация низкая. Чем выше, тем больше ионизация. Так, на высоте 100-110 км электроны концентрируются. Это способствует отражению коротких и средних радиоволн.

Самый важный слой ионосферы - верхний, который находится на высоте 150-400 км. Его особенность в том, что он отражает радиоволны, а это способствует передаче радиосигналов на значительные расстояния.

Именно в ионосфере происходят такое явление, как полярное сияние.

. Экзосфера - состоит из атомов кислорода, гелия и водорода. Газ в этом слое очень разрежен и нередко атомы водорода ускользают в космическое пространство. Поэтому этот слой и называют "зоной рассеивания".

Первым ученым, который предположил, что наша атмосфера имеет вес, был итальянец Э. Торричелли. Остап Бендер, например, в романе "Золотой теленок" сокрушался, что на каждого человека давит воздушный столб весом в 14 кг! Но великий комбинатор немного ошибался. Взрослый человек испытывает на себя давление в 13-15 тонн! Но мы не чувствуем этой тяжести, потому что атмосферное давление уравновешивается внутренним давлением человека. Вес нашей атмосферы составляет 5 300 000 000 000 000 тонн. Цифра колоссальная, хотя это всего лишь миллионная часть веса нашей планеты.

10,045×10 3 Дж/(кг*К)(в интервале температур от 0-100°С), C v 8,3710*10 3 Дж/(кг*К) (0-1500°С). Растворимость воздуха в воде при 0°С 0,036%, при 25°С - 0,22%.

Состав атмосферы

История образования атмосферы

Ранняя история

В настоящее время наука не может со стопроцентной точностью проследить все этапы образования Земли. Согласно наиболее распространённой теории, атмосфера Земли во времени пребывала в четырёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера . На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углеводородами, аммиаком , водяным паром). Так образовалась вторичная атмосфера . Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:

  • постоянная утечка водорода в межпланетное пространство ;
  • химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.

Постепенно эти факторы привели к образованию третичной атмосферы , характеризующейся гораздо меньшим содержанием водорода и гораздо большим - азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

Появление жизни и кислорода

С появлением на Земле живых организмов в результате фотосинтеза , сопровождающегося выделением кислорода и поглощением углекислого газа, состав атмосферы начал меняться. Существуют, однако, данные (анализ изотопного состава кислорода атмосферы и выделяющегося при фотосинтезе), свидетельствующие в пользу геологического происхождения атмосферного кислорода.

Первоначально кислород расходовался на окисление восстановленых соединений - углеводородов , закисной формы железа , содержавшейся в океанах и др. По окончанию данного этапа содержание кислорода в атмосфере стало расти.

В 1990-x годах были проведены эксперименты по созданию замкнутой экологической системы («Биосфера 2»), в ходе которых не удалось создать стабильную систему, обладающую единым составом воздуха. Влияние микроорганизмов привело к снижению уровня кислорода и увеличению количества углекислого газа.

Азот

Образование большого количества N 2 обусловлено окислением первичной аммиачно-водородной атмосферы молекулярным О 2 , который стал поступать с поверхности планеты в результате фотосинтеза, как предполагается, около 3 млрд. лет назад (по другой версии, кислород атмосферы имеет геологическое происхождение). Азот окисляется до NO в верхних слоях атмосферы, используется в промышленности и связывается азотфиксирующими бактериями, в то же время N 2 выделяется в атмосферу в результате денитрификации нитратов и др. азотсодержащих соединений.

Азот N 2 инертный газ и вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окислять его и переводить в биологическую форму могут цианобактерии, некоторые бактерии (например клубеньковые, формирующие ризобиальный симбиоз с бобовыми растениями).

Окисление молекулярного азота электрическиими разрядами используется при промышленном изготовлении азотных удобрений, он же привёл к образованию уникальных месторождений селитры в чилийской пустыне Атакама .

Благородные газы

Сжигание топлива - основной источник загрязняющих газов (CО , NO, SO 2). Диоксид серы окисляется О 2 воздуха до SO 3 в высших слоях атмосферы, который взаимодействует с парами Н 2 О и NH 3 , а образующиеся при этом Н 2 SO 4 и (NН 4) 2 SO 4 возвращаются на поверхность Земли вместе с атмосферными осадками. Использование двигателей внутреннего сгорания приводит к значительному загрязнению атмосферы оксидами азота, углеводородами и соединениями Рb .

Аэрозольное загрязнение атмосферы обусловлено как естественными причинами (извержение вулканов, пыльные бури, унос капел морской воды и частиц пыльцы растений и др.), так и хозяйственной деятельностью человека (добыча руд и строительных материалов, сжигание топлива, изготовление цемента и т. п.). Интенсивный широкомасштабный вынос твёрдых частиц в атмосферу - одна из возможных причин изменений климата планеты.

Строение атмосферы и характеристика отдельных оболочек

Физическое состояние атмосферы определяется погодой и климатом . Основные параметры атмосферы: плотность воздуха, давление, температура и состав. С увеличением высоты плотность воздуха и атмосферное давление уменьшаются. Температура меняется также в зависимости от изменения высоты. Вертикальное строение атмосферы характеризуется различными температурными и электрическими свойствами, разным состоянием воздуха. В зависимости от температуры в атмосфере различают следующие основные слои: тропосферу, стратосферу, мезосферу, термосферу, экзосферу (сферу рассеяния). Переходные области атмосферы между соседними оболочками называют соответственно тропопауза, стратопауза и т. п.

Тропосфера

Стратосфера

В стратосфере задерживается большая часть коротковолновой части ультрафиолетового излучения (180-200 нм) и происходит трансформация энергии коротких волн. Под влиянием этих лучей изменяются магнитные поля, распадаются молекулы, происходит ионизация, новообразование газов и других химических соединений. Эти процессы можно наблюдать в виде северных сияний , зарниц, и др. свечений.

В стратосфере и более высоких слоях под воздействия солнечной радиации молекулы газов диссоциируют - на атомы (выше 80 км диссоциируют СО 2 и Н 2 , выше 150 км - О 2 , выше 300 км - Н 2). На высоте 100-400 км в ионосфере происходит также ионизация газов, на высоте 320 км концентрация заряженных частиц (О + 2 , О − 2 , N + 2) составляет ~ 1/300 от концентрации нейтральных частиц. В верхних слоях атмосферы присутствуют свободные радикалы - ОН , НО 2 и др.

В стратосфере почти нет водяного пара.

Мезосфера

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0°С в стратосфере до −110°С в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200-250 км соответствует температуре ~1500°С. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000-3000 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме этих чрезвычайно разреженных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80% массы атмосферы, на долю стратосферы - около 20%; масса мезосферы - не более 0,3%, термосферы - менее 0,05% от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000-3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу . Гетеросфера - это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы называемая гомосферой. Граница между этими слоями называется турбопаузой , она лежит на высоте около 120 км.

Свойства атмосферы

Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 15 км, хотя примерно до 115 км атмосфера содержит кислород.

Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.

В лёгких человека постоянно содержится около 3 л альвеолярного воздуха. Парциальное давление кислорода в альвеолярном воздухе при нормальном атмосферном давлении составляет 110 мм рт. ст., давление углекислого газа - 40 мм рт. ст., а паров воды −47 мм рт. ст. С увеличением высоты давление кислорода падает, а суммарное давление паров воды и углекислоты в лёгких остаётся почти постоянным - около 87 мм рт. ст. Поступление кислорода в лёгкие полностью прекратится, когда давление окружающего воздуха станет равным этой величине.

На высоте около 19-20 км давление атмосферы снижается до 47 мм рт. ст. Поэтому на данной высоте начинается кипение воды и межтканевой жидкости в организме человека. Вне герметической кабины на этих высотах смерть наступает почти мгновенно. Таким образом, с точки зрения физиологии человека «космос» начинается уже на высоте 15-19 км.

Плотные слои воздуха - тропосфера и стратосфера - защищают нас от поражающего действия радиации. При достаточном разрежении воздуха, на высотах более 36 км, интенсивное действие на организм оказывает ионизирующая радиация - первичные космические лучи; на высотах более 40 км действует опасная для человека ультрафиолетовая часть солнечного спектра.

В отличие от горячих и холодных планет нашей Солнечной системы, на планете Земля существуют условия, которые дают возможность жизни в определенной форме. Одним из главных условий является состав атмосферы, который дает всему живому возможность свободно дышать и защищает от смертельного излучения, царящего в космосе.

Из чего состоит атмосфера

Атмосфера Земли состоит из множества газов. В основном который занимает 77 %. Газ, без которого немыслима жизнь на Земле, занимает гораздо меньший объем, содержание кислорода в воздухе равно 21 % от всего объема атмосферы. Последние 2 % - смесь различных газов, включая аргон, гелий, неон, криптон и другие.

Атмосфера Земли поднимается на высоту 8 тыс. км. Воздух, пригодный для дыхания, есть только в нижнем слое атмосферы, в тропосфере, достигающей на полюсах - 8 км, ввысь, а над экватором - 16 км. С увеличением высоты воздух становится более разреженным и тем больше ощутима нехватка кислорода. Чтобы рассмотреть, какое содержание кислорода в воздухе бывает на разной высоте, приведем пример. На пике Эвереста (высота 8848 м) воздух вмещает этого газа в 3 раза меньше, чем над уровнем моря. Поэтому покорители высокогорных вершин - альпинисты - могут подняться на его вершину только в кислородных масках.

Кислород - главное условие выживания на планете

В начале существования Земли воздух, который ее окружал, не имел этого газа в своем составе. Это вполне подходило для жизни простейших - одноклеточных молекул, которые плавали в океане. Им кислород не был нужен. Процесс начался примерно 2 млн лет назад, когда первые живые организмы в результате реакции фотосинтеза начали выделять малые дозы этого газа, полученного в результате химических реакций, сначала в океан, затем в атмосферу. Жизнь развилась на планете и приняла разнообразные формы, большинство из которых не дожили до наших времен. Некоторые организмы со временем приспособились к жизни с новым газом.

Они научились использовать его силу безопасно внутри клетки, где она выступала в роли электростанции, для того чтобы добывать энергию из еды. Такой способ использования кислорода называется дыханием, и мы это делаем ежесекундно. Именно дыхание дало возможность для появления более сложных организмов и людей. За миллионы лет содержание в воздухе кислорода взлетело до современного уровня - около 21 %. Накопление этого газа в атмосфере способствовало созданию озонового слоя на высоте 8-30 км от поверхности земли. Вместе с этим планета получила защиту от пагубного действия ультрафиолетовых лучей. Дальнейшая эволюция жизненных форм на воде и на суше стремительно возросла в результате увеличения фотосинтеза.

Анаэробная жизнь

Хотя некоторые организмы адаптировались к повышающемуся уровню выделяемого газа, многие из простейших форм жизни, которые существовали на Земле, исчезли. Другие организмы выжили, прячась от кислорода. Некоторые из них сегодня живут в корнях бобовых, используя азот из воздуха для построения аминокислот для растений. Смертельный организм ботулизма - еще один "беженец" от кислорода. Он спокойно выживает в вакуумных упаковках с консервированными продуктами.

Какой кислородный уровень оптимален для жизни

Преждевременно рожденные малыши, легкие которых еще не полностью раскрыты для дыхания, попадают в специальные инкубаторы. В них содержание кислорода в воздухе по объему выше, и вместо обычных 21 % здесь установлен его уровень 30-40 %. Малыши, имеющие серьезные проблемы дыхания, окружаются воздухом со стопроцентным уровнем кислорода, чтобы предотвратить повреждение детского мозга. Нахождение в таких обстоятельствах совершенствует кислородный режим тканей, пребывающих в состоянии гипоксии, приводит в норму их жизненные функции. Но его чрезмерное количество в воздухе так же опасно, как и недостаток. Чрезмерное количество кислорода в крови ребенка может привести к повреждению кровеносных сосудов в глазах и спровоцировать утрату зрения. Это показывает двойственность свойств газа. Мы должны дышать им, чтобы жить, но его избыток иногда может стать отравой для организма.

Процесс окисления

При соединении кислорода с водородом или углеродом, совершается реакция, именуемая окислением. Этот процесс заставляет органические молекулы, являющиеся основанием жизни, распадаться. В человеческом организме окисление проходит следующим образом. Эритроциты крови собирают кислород из легких и разносят его по всему телу. Происходит процесс разрушения молекул еды, которую мы употребляем. Этот процесс освобождает энергию, воду и оставляет диосксид углерода. Последний выводится клетками крови обратно в легкие, и мы выдыхаем его в воздух. Человек может задохнуться, если ему помешать дышать дольше, чем 5 минут.

Дыхание

Рассмотрим содержание кислорода во вдыхаемом воздухе. Атмосферный воздух, попадающий извне в легкие при вдыхании, именуется вдыхаемым, а воздух, который выходит наружу через дыхательную систему при выдохе, - выдыхаемым.

Он представляет собой смесь воздуха, заполнявшего альвеолы, с тем, который находится в дыхательных путях. Химический состав воздуха, который здоровый человек вдыхает и выдыхает в естественных условиях, практически не меняется и выражается такими цифрами.

Кислород - главная для жизни составляющая воздуха. Изменения количества этого газа в атмосфере невелики. Если у моря содержание в воздухе кислорода вмещает до 20,99 %, то даже в очень загрязненном воздухе индустриальных городов его уровень не падает ниже 20,5 %. Такие изменения не выявляют воздействия на человеческий организм. Физиологические нарушения проявляются тогда, когда процентное содержание кислорода в воздухе падает до 16-17 %. При этом наблюдается явная которая ведет к резкому падению жизнедеятельности, а при содержании в воздухе кислорода 7-8 % возможен летальный исход.

Атмосфера в разные эпохи

Состав атмосферы всегда оказывал воздействие на эволюцию. В разные геологические времена из-за природных катаклизмов наблюдались подъемы или падения уровня кислорода, и это влекло за собой изменение биосистемы. Примерно 300 миллионов лет назад содержание его в атмосфере поднялось до 35 %, при этом наблюдалось заселение планеты насекомыми гигантских размеров. Наибольшее вымирание живых существ в истории Земли случилось около 250 миллионов лет назад. Во время него более чем 90 % обитателей океана и 75 % жителей суши погибло. Одна из версий массового вымирания гласит, что виной тому оказалось низкое содержание в воздухе кислорода. Количество этого газа упало до 12 %, и это - в нижнем слое атмосферы до высоты 5300 метров. В нашу эпоху содержание кислорода в атмосферном воздухе доходит до 20,9 %, что на 0,7 % ниже, чем 800 тысяч лет назад. Эти цифры подтверждены учеными из Принстонского университета, которые исследовали пробы Гренландского и Атлантического льда, образовавшегося в то время. Замерзшая вода сберегла пузырьки воздуха, и этот факт помогает вычислить уровень кислорода в атмосфере.

Чему подчиняется уровень его в воздухе

Активное поглощение его из атмосферы может быть вызвано передвижением ледников. Отодвигаясь, они открывают гигантские площади органических пластов, потребляющих кислород. Еще одним поводом может быть остывание вод Мирового океана: его бактерии при пониженной температуре активнее поглощают кислород. Исследователи утверждают, что индустриальный скачок и вместе с ним сжигание огромного количества топлива особенного воздействия при этом не оказывают. Мировой океан охлаждается в течение 15 миллионов лет, и количество жизненно важного в атмосфере уменьшилось независимо от воздействия человека. Вероятно, на Земле совершаются некоторые природные процессы, ведущие к тому, что потребление кислорода становится выше его производства.

Воздействие человека на состав атмосферы

Поговорим о влиянии человека на состав воздуха. Тот уровень, который мы сегодня имеем, идеально подходит для живых существ, содержание кислорода в воздухе составляет 21 %. Баланс его и других газов определяется жизненным циклом в природе: животные выдыхают диоксид углерода, растения используют его и выделяют кислород.

Но не существует гарантии, что такой уровень будет постоянным всегда. Повышается количество диоксида углерода, выбрасываемого в атмосферу. Это происходит из-за использования топлива человечеством. А оно, как известно, образовалось из окаменелостей органического происхождения и в воздух попадает диоксид углерода. А тем временем самые большие растения нашей планеты, деревья, уничтожаются с нарастающей скоростью. За минуту исчезают километры леса. Это значит, что часть кислорода в воздухе постепенно падает и ученые уже сейчас бьют тревогу. Земная атмосфера - не безграничная кладовая и кислород в нее извне не поступает. Он все время вырабатывался вместе с развитием Земли. Нужно постоянно помнить, что этот газ производится растительностью в процессе фотосинтеза за счет потребления углекислого газа. И любое существенное уменьшение растительности в виде уничтожения лесов, неотвратимо снижает попадание кислорода в атмосферу, тем самым, нарушая его баланс.