Правообладатель иллюстрации BBC World Service Image caption "Хаббл" был выведен на орбиту челночным кораблем "Дискавери" 24 апреля 1990 года

На этой неделе исполняется 25 лет со дня вывода на орбиту космического телескопа "Хаббл". Серебряный юбилей был отмечен очередным снимком, на котором изображены молодые звезды, сияющие на фоне густого облака из газа и пыли.

Это звездное скопление - Westerlund 2 - расположено в 20 тысячах световых лет от Земли в созвездии Карина.

Правообладатель иллюстрации BBC World Service Image caption Вскоре после запуска телескопа выявился дефект в его главном зеркале, что делало все снимки нечеткими

Инженеры НАСА считают, что орбитальный телескоп прослужит еще не менее пяти лет.

"Самый большой оптимист не мог предсказать в 1990 году, до какой степени "Хаббл" перепишет все наши учебники по астрофизике и планетологии", - говорит администратор НАСА Чарли Болден.

Вскоре после запуска телескопа выявился дефект в его главном зеркале, что делало все снимки нечеткими.

В 1993 году астронавтам удалось исправить этот дефект путем установки специально созданного корректирующего устройства.

Правообладатель иллюстрации BBC World Service Image caption Многие снимки "Хаббла" - например, туманности Орел, - стали научной сенсацией

Спустя еще четыре визита по обслуживанию телескопа он находится в прекрасном состоянии и с технической точки зрения способен на гораздо большее, чем сразу после запуска.

В прошлом "Хаббл" страдал от постепенного износа всех его шести гироскопов, которые используются в системе ориентации.

Однако после их замены лишь один вышел из строя в марте 2014 года. За минувшие годы благодаря замене устаревших электронных блоков и установке новых камер телескоп стал работать заметно лучше.

Правообладатель иллюстрации BBC World Service Image caption Этот снимок Юпитера и его спутника Ганимед привлекает своей драматичностью

Трудно переоценить вклад этого орбитального телескопа в науку.

В момент его запуска астрономы ничего не знали о возрасте Вселенной - оценки колебались от 10 до 20 млрд лет.

Исследование пульсаров, проведенное с помощью телескопа, сузило этот разброс, и, согласно нынешним представлениям, с момента Большого взрыва прошло 13,8 млрд лет.

Правообладатель иллюстрации BBC World Service Image caption "Хаббл" помог в определении возраста Вселенной, который, по нынешним представлениям, составляет 13,8 млрд лет

"Хаббл" сыграл важнейшую роль в обнаружении ускорения, с которым расширяется Вселенная, а также принес решающие доказательства существования сверхмассивных черных дыр в центрах галактик.

Сильнейшей стороной космического телескопа по сравнению с новым поколением земных телескопов остается его уникальная способность проникать в глубокое прошлое Вселенной, наблюдая объекты, которые сформировались на очень ранних этапах ее истории.

Правообладатель иллюстрации BBC World Service Image caption Крабовая туманность находится на расстоянии 6,5 тысяч световых лет и представляет собой остатки взрыва сверхновой

Среди самых крупных достижений телескопа несомненно следует назвать наблюдения "глубокого поля", когда он в течение многих дней фиксировал световое излучение, приходящее к нам из темного участка неба и выявил присутствие тысяч крайне отдаленных и очень слабо светящих галактик.

В настоящее время телескоп большую часть времени занимается подобными наблюдениям в рамках программы "Поля фронтира". "Хаббл" рассматривает шесть огромных кластеров древних галактик.

Правообладатель иллюстрации NASA Image caption Каждый из светящихся объектов на этом снимке представляет собой отдаленную галактику

Используя эффект гравитационного линзирования, "Хаббл" способен заглянуть в еще более далекое прошлое Вселенной.

"Гравитация, искажая свет, поступающий от дальних галактик, позволяет нам заглянуть за эти скопления", - говорит Дженнифер Лотц, участница программы.

"Хаббл" в настоящее время способен "видеть" объекты, свет от которых в 10-50 раз слабее, чем от наблюдавшихся ранее.

Целью этих исследований является наблюдение самых ранних этапов формирования первого поколения звезд и галактик, отдаленных от Большого Взрыва всего на несколько сот миллионов лет.

Правообладатель иллюстрации BBC World Service Image caption "Расширяющаяся Вселенная": фотографии телескопа "Хаббл", изд-во Taschen

Именно этим на другом уровне займется и наследник телескопа "Хаббл" - гораздо более крупный и совершенный космический телескоп "Джеймс Уэбб".

Его запуск запланирован на 2018 год. Он был спроектирован и построен специально для выполнения такой задачи. Получение снимков, на которые у телескопа "Хаббл" уходят дни и недели, займет лишь часы.

Космический телескоп «Хаббл»


Обычно астрономы строили свои обсерватории на вершинах гор, выше облаков и загрязненной атмосферы. Но даже тогда изображение искажалось воздушными потоками. Самое четкое изображение доступно только из внеатмосферной обсерватории - космоса.


С помощью телескопа можно увидеть то, что недоступно человеческому глазу, поскольку телескоп собирает больше электромагнитного излучения. В отличие от подзорной трубы, в которой для сбора и фокусирования света используются линзы, в больших астрономических телескопах эту функцию выполняют зеркала.


Телескопы с самыми большими зеркалами должны иметь наилучшее изображение, поскольку собирают наибольшее количество излучения.


Космический телескоп «Хаббл» — автоматическая обсерватория на орбите вокруг Земли, названная в честь Эдвина Хаббла, американского астронома.



И хотя диаметр зеркала "Хаббла" только 2,4 м - меньше самых больших телескопов на Земле, - он может видеть объекты в 100 раз менее четкие, и детали в десять раз мельче, чем лучшие наземные телескопы. И это потому, что он находится выше искажающей атмосферы.


Телескоп «Хаббл» — совместный проект NASA и Европейского космического агентства.


Размещение телескопа в космосе даёт возможность регистрировать электромагнитное излучение в диапазонах, в которых земная атмосфера непрозрачна, в первую очередь — в инфракрасном диапазоне.


Из-за отсутствия влияния атмосферы, разрешающая способность телескопа в 7—10 раз больше аналогичного телескопа, расположенного на Земле.


Марс

Космический телескоп "Хаббл" помог ученым узнать много нового об устройстве нашей галактики, потому оценить его важность для человечества очень трудно.


Достаточно взглянуть на список самых важных открытий этого оптического устройства, чтобы понять, насколько полезен он был, и каким важным инструментом в изучении космоса он еще может быть.


С помощью телескопа "Хаббл" было изучено столкновение Юпитера с кометой, было получено изображение рельефа Плутона, данные с телескопа стали основой гипотезы о массе черных дыр, находящихся в центре абсолютно каждой галактики.


Ученые получили возможность увидеть полярные сияния на некоторых планетах Солнечной системы, например, Юпитере и Сатурне, а также были сделаны многие наблюдения и открытия.


Юпитер

Космический телескоп "Хаббл" "заглянул" в другую солнечную систему, отдаленную от нашей на 25 световых лет, и впервые получил изображение нескольких ее планет.


Телескоп "Хаббл" получил изображение новых планет

На одной из фотографий, полученных в оптическом, то есть в видимом свете, "Хаббл" запечатлел планету Фомалхот, вращающуюся по орбите вокруг яркой звезды Фомалхот, расположенной от нас на расстоянии 25 световых лет (около 250 триллионов километров) в созвездии Южная Рыба.


"Данные с "Хаббла" невероятно важны. Излучение света с планеты Фомалхот в миллиард раз слабее света, исходящего от звезды", - прокомментировал изображение новой планеты астроном из Калифорнийского университета Пол Калас. Он и другие ученые начали исследование звезды Фомалхот еще в 2001 году, когда о существовании планеты рядом со звездой еще не было известно.


В 2004 году "Хаббл" направил на Землю первые снимки районов вокруг звезды.


На новых снимках с космического телескопа "Хаббл", астроном получил "документальное" подтверждение своим предположениям о существовании планеты Фомалхот.


С помощью фотографий орбитального телескопа ученые "увидели" также еще три планеты в созвездии Пегаса.
Всего астрономами за пределами нашей Солнечной системы обнаружено около 300 планет.


Но все эти открытия делались на основе косвенных признаков, главным образом, через наблюдение за воздействием их гравитациоционных полей на звезды, вокруг которых они обращаются.


"Каждая планета вне нашей солнечной системы была только на схеме, - отметил Брюс Макинтош, астрофизик из Национальной лаборатории в Калифорнии. - Мы безуспешно пытались получить изображения планет в течение восьми лет, а теперь у нас уже есть фотографии нескольких планет сразу".


За 15 лет работы на околоземной орбите «Хаббл» получил 700 тысяч изображений 22 тысяч небесных объектов — звёзд, туманностей, галактик, планет.


Тем не менее, цена, которую приходится платить за достижения «Хаббла» весьма высока: стоимость содержания космического телескопа выше в 100 и более раз, чем наземного рефлектора, с 4-метровым зеркалом.

Уже в первые недели после начала работы телескопа в 1990 году, полученные изображения продемонстрировали серьёзную проблему в оптической системе телескопа. Хотя качество изображений было лучше, чем у наземных телескопов, «Хаббл» не мог достичь заданной резкости, и разрешение снимков было значительно хуже ожидаемого.
Анализ изображений показал, что источником проблемы является неверная форма главного зеркала. Оно было изготовлено слишком плоским по краям. Отклонение от заданной формы поверхности составило лишь 2 микрометрa, но результат оказался катастрофическим — оптический дефект, при котором свет, отражённый от краёв зеркала, фокусируется в точке, отличной от той, в которой фокусируется свет, отражённый от центра зеркала.
Потеря значительной части светового потока значительно уменьшили пригодность телескопа для наблюдений тусклых объектов и получения изображений с высокой контрастностью. Это означало, что практически все космологические программы стали просто невыполнимыми, поскольку требовали наблюдений особо тусклых объектов.


В течение первых трёх лет работы, до установки корректирующих устройств телескоп выполнил большое количество наблюдений. Дефект не оказывал большого влияния на спектроскопические замеры. Несмотря на отменённые из-за дефекта эксперименты, было достигнуто множество важных научных результатов.


Техническое обслуживание телескопа.


Техническое обслуживание телескопа «Хаббла» производится космонавтами во время выходов в открытый космос с космических кораблей многоразового использования типа «Спейс Шаттл».


Всего были осуществлены четыре экспедиции по обслуживанию телескопа «Хаббл».

В связи с выявившимся дефектом зеркала, первая экспедиция по обслуживанию телескопа должна была установить на телескопе корректирующую оптику. Экспедиция (2-13 декабря 1993 г.) была одной из сложнейших, были осуществлены пять длительных выходов в открытый космос. Кроме этого были заменены солнечные батареи, обновлен бортовой вычислительный комплекс, была произведена коррекция орбиты.

Второе техобслуживание было произведено 11-21 февраля 1997 года. Было заменено исследовательское оборудование, заменён бортовой регистратор, произведён ремонт теплоизоляции и выполнена коррекция орбиты.


Экспедиция 3А состоялась 19-27 декабря 1999 года. Было принято решение о досрочном проведении части работ. Это было вызвано тем, что три из шести гироскопов системы наведения вышли из строя. Экспедиция заменила все шесть гироскопов, датчик точного наведения и бортовой компьютер.


Экспедиция 3В (четвёртая миссия) выполнена 1-12 марта 2002 года. В ходе экспедиции камера съёмки тусклых объектов была заменена усовершенствованной обзорной камерой. Были во второй раз заменены солнечные батареи. Новые панели были на треть меньше по площади, что значительно уменьшило потери на трение в атмосфере, но при этом вырабатывали на 30% больше энергии, благодаря этому стала возможна одновременная работа со всеми приборами, установленными на борту обсерватории.


Произведённые работы существенно расширили возможности телескопа, позволили получить изображения глубокого космоса.


Предполагается, что телескоп Хаббл продолжит свою работу на орбите, по крайней мере, до 2013 года.

Наиболее значимые наблюдения

* «Хаббл» предоставил высококачественные изображения столкновения кометы Шумейкеров-Леви 9 с Юпитером в 1994 году.


* Впервые получены карты поверхности Плутона и Эриды.


* Впервые наблюдались ультрафиолетовые полярные сияния на Сатурне, Юпитере и Ганимеде.


* Получены дополнительные данные о планетах вне солнечной системы, в том числе, спектрометрические.


* Найдено большое количество протопланетных дисков вокруг звёзд в Туманности Ориона. Доказано, что процесс формирования планет происходит у большинства звёзд нашей Галактики.


* Частично подтверждена теория о сверхмассивных чёрных дырах в центрах галактик, на основе наблюдений выдвинута гипотеза, связывающая массу чёрных дыр и свойства галактики.


* уточнён возраст Вселенной — 13,7 млрд. лет.

Из своего земного дома мы вглядываемся вдаль, стремясь представить себе устройство мира, в котором родились. Ныне мы глубоко проникли в пространство. Близкие окрестности мы знаем уже довольно хорошо. Но по мере продвижения вперёд наши познания становятся всё менее полными, пока мы не подходим к неясному горизонту, где в тумане ошибок ищем едва ли более реальные ориентиры. Поиски будут продолжаться. Стремление к знаниям древнее истории. Оно не удовлетворено, его нельзя остановить.
Эдвин Пауэлл Хаббл

На заре ХХ века теоретики космонавтики мечтали о том, что когда-нибудь человечество научится запускать в космос телескопы. Земная оптика в то время была несовершенна, астрономическим наблюдениям часто мешала плохая погода и «засветка» неба, поэтому казалось разумным отправить телескоп за пределы атмосферы, чтобы изучать планеты и звёзды без помех. Но даже фантасты не смогли бы в то время предсказать, сколько удивительных и неожиданных открытий принесут орбитальные телескопы.

СЧАСТЛИВЫЙ БРАК

Самым известным орбитальным телескопом является «Хаббл» (Hubble Space Telescope, HST), названный в честь знаменитого американского астронома Эдвина Пауэлла Хаббла, доказавшего, что галактики являются звёздными системами, и открывшего их разбегание.

Телескоп «Хаббл» входит в четвёрку Больших обсерваторий NASA. Имея главное зеркало диаметром 2,4 метра, он долгое время оставался самым большим оптическим инструментом на орбите, пока в 2009 году Европейское космическое агентство не запустило туда инфракрасный телескоп «Гершель» с диаметром зеркала 3,5 метра. На Земле такого размера инструменты не могут полностью реализовать свою разрешающую способность: дрожание атмосферы размывает изображение.

Проект мог провалиться, если бы телескоп изначально не был рассчитан на обслуживание астронавтами. Фирма «Кодак» быстро изготовила второе зеркало, однако заменить его в космосе было невозможно, и тогда специалисты предложили создать космические «очки» - систему оптической коррекции COSTAR из двух особых зеркал. Чтобы установить систему на «Хаббл», 2 декабря 1993 года на орбиту отправился шаттл Endeavour. Астронавты совершили пять сложнейших выходов в открытый космос и вернули дорогостоящий телескоп к жизни.

Позднее астронавты NASA летали к «Хабблу» ещё четыре раза, значительно продлив срок его эксплуатации. Очередная экспедиция была назначена на февраль 2005 года, но в марте 2003-го, после катастрофы шаттла Columbia, она была отложена на неопределённый срок, что поставило под угрозу дальнейшую работу телескопа.

Под давлением общественности в июле 2004 года комиссия Академии наук США постановила сохранить телескоп. Через два года новый директор NASA Майкл Гриффин объявил о подготовке последней экспедиции по ремонту и модернизации телескопа. Предполагается, что после этого «Хаббл» проработает на орбите до 2014 года, после чего его сменит более совершенный телескоп «Джеймс Вебб».

«Хаббл» был доставлен на орбиту 24 апреля 1990 года в грузовом отсеке шаттла Discovery. По иронии судьбы «Хаббл», начав работу в космосе, дал изображение хуже, чем такой же по размерам наземный телескоп. Причиной была ошибка при изготовлении главного зеркала

РАБОТА С «ХАББЛОМ»

С «Хабблом» может поработать любой человек, имеющий диплом астронома. Однако придётся подождать в очереди. Конкуренция за время наблюдений высока: обычно запрошенное время в шесть, а иногда в девять раз превышает реально доступное.

В течение нескольких лет часть времени из резерва выделялась астрономам-любителям. Их заявки рассматривались специальным комитетом. Основным требованием к заявке была оригинальность темы. В период между 1990 и 1997 годом было произведено 13 наблюдений по программам, предложенным астрономами-любителями. Затем из-за недостатка времени эту практику прекратили.

Открытия, сделанные с помощью «Хаббла», трудно переоценить: первые изображения астероида Церера, карликовой планеты Эрида, далёкого Плутона. В 1994 году «Хаббл» предоставил высококачественные снимки столкновения кометы Шумейкеров-Леви-9 с Юпитером. «Хаббл» отыскал множество протопланетных дисков вокруг звёзд в Туманности Ориона - таким образом астрономы смогли доказать, что процесс формирования планет происходит у большинства звёзд нашей галактики. По результатам наблюдений квазаров была построена космологическая модель Вселенной - оказалось, что наш мир расширяется с ускорением и заполнен загадочной тёмной материей. Кроме того, наблюдения «Хаббла» позволили уточнить возраст Вселенной - 13,7 миллиарда лет.

За 15 лет работы на околоземной орбите «Хаббл» получил 700 тысяч изображений 22 тысяч небесных объектов: планет, звёзд, туманностей и галактик. Поток данных, которые он ежедневно генерирует в процессе наблюдений, составляет 15 гигабайт. Общий их объём уже превысил 20 терабайт.

В этой подборке мы представляем наиболее интересные из снимков, сделанных «Хабблом». Тема - туманности и галактики. Ведь «Хаббл» прежде всего создавался для на- блюдения за ними. В следующих статьях «МФ» обратится к снимкам других космических объектов.

ТУМАННОСТЬ АНДРОМЕДЫ

Туманность Андромеды, получившая в каталоге Мессье обозначение М31, хорошо известна любителям как астрономии, так и научной фантастики. И все они знают, что это вовсе не туманность, а ближайшая к нам галактика. Благодаря наблюдениям за ней Эдвин Хаббл сумел доказать, что многие из туманностей являются звёздными системами, подобными нашему Млечному Пути.

Как следует из названия, туманность расположена в созвездии Андромеды и находится от нас на расстоянии 2,52 миллиона световых лет. В 1885 году в галактике вспыхнула сверхновая SN 1885A. За всю историю наблюдений это пока единственное подобное событие, зарегистрированное в М31.

В 1912 году было установлено, что Туманность Андромеды приближается к нашей галактике со скоростью 300 км/с. Столкновение двух галактических систем произойдёт приблизительно через 3-4 миллиарда лет. Когда это произойдёт, они сольются в одну большую галактику, которую астрономы называют Млечномедой. Возможен вариант, что при этом наша Солнечная система будет выброшена в межгалактическое пространство мощными гравитационными возмущениями

КРАБОВИДНАЯ ТУМАННОСТЬ

Крабовидная туманность - одна из самых знаменитых газовых туманностей. Она занесена в каталог французского астронома Шарля Мессье под номером один (М1). Сама идея создать каталог космических туманностей пришла к Мессье после того, как, наблюдая небо 12 сентября 1758 года, он принял Крабовидную туманность за новую комету. Чтобы избежать таких ошибок в будущем, француз и взялся регистрировать подобные объекты.

Крабовидная Туманность находится в созвездии Тельца, на расстоянии 6,5 тысяч световых лет от Земли, и представляет собой остатки от взрыва сверхновой. Сам взрыв наблюдали арабские и китайские астрономы 4 июля 1054 года. Согласно сохранившимся записям, вспышка оказалась настолько яркой, что была видна даже днём. С тех пор туманность расширяется с чудовищной скоростью - около 1000 км/с. Её протяжённость сегодня составляет более десяти световых лет. В центре туманности находится пульсар PSR B0531+21 - десятикилометровая нейтронная звезда, оставшаяся после взрыва сверхновой. Свое название Крабовидная туманность получила от рисунка астронома Уильяма Парсонса, сделанного в 1844 году, - в этом наброске она очень напоминала краба

У орбитальной астрономии есть своя история. К примеру, во время полного солнечного затмения 19 июня 1936 года московский астроном Пётр Куликовский совершил подъём на субстратостате для фотографирования короны и ореола Солнца. В 1950-х годах француз Одуен Дольфюс предпринял серию стратосферных полётов в специально сконструированной для этой цели гермокабине, поднимаемой гирляндой из 104-х небольших воздушных шаров, привязанных к 450-метровому тросу. Кабина была снабжена 30-сантиметровым телескопом, и с его помощью снимались спектры планет. Развитием этих экспериментов стала беспилотная гондола «Астролаб», с которой французы выполнили серию стратосферных наблюдений, - её система ориентации и стабилизации уже создавалась на основе космических технологий.

Для американских астрономов первым шагом к орбитальным телескопам стала программа «Стратоскоп», которой руководил известный астрофизик Мартин Шварцшильд. С 1955 года начались полёты «Стратоскопа-1» с солнечным телескопом, а 1 марта 1963 года свой первый ночной полёт совершил «Стратоскоп-2», оснащённый высококачественным рефлектором системы Кассегрена - с его помощью были получены инфракрасные спектры планет и звёзд. Последний и наиболее удачный полёт состоялся в марте 1970 года. За девять часов наблюдения были получены снимки планет-гигантов и ядра галактики NGC 4151. Полётом управляла группа во главе с сотрудником Принстонского университета Робертом Даниельсоном, который позднее вошёл в группу проектантов телескопа «Хаббл».

СТОЛПЫ ТВОРЕНИЯ

Столпы Творения - фрагменты газопылевой туманности Орла (М16), которую можно разглядеть в созвездии Змеи. «Хаббл» снял их в апреле 1995 года, и этот снимок стал одним из самых популярных в коллекции NASA. Первоначально считалось, что в Столпах Творения рождаются новые звёзды - отсюда и название. Однако более поздние исследования показали обратное - как раз там материала для образования звёзд недостаточно. Пик рождения светил в туманности Орла завершился уже миллион лет назад, и первые молодые и горячие солнца своим излучением успели разогнать газ в центре

Столпы Творения являются частью нашей галактики, но отстоят на 7 тысяч световых лет. Они колоссальны (высота левого - треть парсека), но весьма неустойчивы. Недавно астрономы обнаружили, что около 9 тысяч лет назад рядом с ними взорвалась сверхновая. Ударная волна достигла Столпов 6 тысяч лет на- зад и уже уничтожила их, но с учетом удалённости земляне ещё нескоро смогут наблюдать разрушение одного из самых необычных и красивых космических объектов.

ИНКУБАТОР МИРОВ

Если в туманности Орла процесс рождения новых звёзд завершился, то в созвездии Ориона пока ещё нет. Газопылевая туманность Ориона (М42) находится в том же спиральном рукаве галактики, что и Солнце, но на расстоянии 1300 световых лет от нас. Это ярчайшая туманность ночного неба, она хорошо различима невооружённым глазом. Размеры туманности велики - её протяжённость составляет 33 световых года. Там находится около тысячи светил в возрасте менее миллиона лет (по космическим меркам, это младенцы) и десятки тысяч звёзд, которым чуть больше десяти миллионов лет. Благодаря «Хабблу» удалось разглядеть протопланетные диски рядом с юными звёздами, причём на разных стадиях формирования. Наблюдая за туманностью, астрономы могут наконец составить ясное представление о том, как рождаются планетные системы. Однако происходящие в туманности Ориона процессы настолько активны, что уже через 100 тысяч лет она распадётся и прекратит существование, оставив после себя скопление звёзд с планетами.

БУДУЩЕЕ СОЛНЦА

В космосе можно увидеть не только рождение миров, но и их смерть. На снимке «Хаббла», полученном в 2001 году, запечатлена Муравьиная туманность, которая известна астрономам под обозначением Mz3 (Menzel 3). Туманность расположена в нашей галактике на расстоянии 3 тысяч световых лет от Земли и образовалась в результате выбросов газа из звезды, похожей на наше Солнце. Её протяжённость более светового года.

Муравьиная туманность озадачила астрономов. Пока они не могут ответить на вопрос, почему вещество умирающей звезды разлетается не в виде расширяющейся сферы, а в виде двух независимых выбросов, придающих туманности вид муравья, - это плохо согласуется с существующей теорией эволюции звёзд. Одно из возможных объяснений: у затухающей звезды есть очень близкая звезда-компаньон, сильные гравитационные приливные силы которой оказыва- ют влияние на формирование потоков газа. Другое объяснение: при вращении затухающей звезды её магнитное поле приобретает сложную закручивающуюся структуру, влияя на заряженные частицы, разлетающиеся в пространстве со скоростью до 1000 км/с. Так или иначе, но пристальное наблюдение за Муравьиной туманностью поможет нам увидеть возможное будущее нашего родного светила.

СМЕРТЬ МИРА

Звёзды, превышающие по массе Солнце, обычно заканчивают свою жизнь превращением в сверхновую. «Хабблу» удалось запечатлеть несколько таких вспышек, но, пожалуй, самым эффектным выглядит снимок сверхновой 1994D, которая взорвалась на окраинах диска галактики NGC 4526 (видна на фотографии как яркое пятно внизу слева). Сверхновая 1994D не была чем-то особенным - наоборот, она интересна как раз тем, что очень похожа на другие. Имея представление о сверхновых, астрономы по блеску 1994D могут определить расстояние до неё и уточнить, как расширяется Вселенная. Сам снимок наглядно демонстрирует масштабы явления - по своей светимости сверхновая сопоставима со светимостью целой галактики.

ПОЖИРАТЕЛЬ ГАЛАКТИК

В космосе существуют не только звёзды, туманности и галактики, но и чёрные дыры. Чёрная дыра - это область в пространстве, гравитационное притяжение в которой настолько велико, что её не может покинуть даже свет. Счи- тается, что можно встретить несколько типов чёрных дыр: возникших в момент Большого взрыва, зародившихся в результате коллапса массивной звезды и сформировавшихся в центрах галактик. Астрономы говорят, что огромные чёрные дыры есть в центре любой спиральной и эллиптической галактики. Но как увидеть то, из чего не способен вырваться даже свет? Оказывается, обнаружить чёрную дыру можно по её взаимодействию с пространством.

На снимке «Хаббла», полученном в 2000 году, запечатлён центр эллиптической галактики М87 - крупнейшей в скоплении созвездия Девы. Она находится от нас на расстоянии 50 миллионов световых лет и является источником мощнейшего радио- и гамма-излучения. Ещё в 1918 году было установлено, что из центра галактики бьёт струя раскалённых газов, скорость внутри которой близка к световой. Протяжённость струи - 5 тысяч световых лет! Изучение галактики М87 показало: феноменальную плотность вещества в её центре и чудовищную струю можно объяснить, только если предположить, что там находится гигантская чёрная дыра, масса которой в 6,4 миллиарда раз больше солнечной. Наличие этого «пожирателя» галактик и периодические выбросы вещества из области рядом с ним препятствуют рождению новых звёзд. Астрономы уверены: если бы в центре М87 находилась обычная чёрная дыра, то галактика имела бы спиральный вид, а по яркости в 30 раз превосходила бы нашу.

ЮНОСТЬ ВСЕЛЕННОЙ

Орбитальный телескоп «Хаббл» может служить не только оптическим инструментом, но и настоящей «машиной времени» - например, с его помощью можно разглядеть объекты, появившиеся практически сразу после Большого взрыва. В 2004 году «Хаббл» посредством новой чувствительной камеры сумел сфотографировать скопление из 10 тысяч самых удалённых и, соответственно, самых древних галактик. Эти галактики находятся от нас на рекордном расстоянии - 13,1 миллиарда световых лет. Если наша Вселенная родилась 13,7 миллиарда лет назад, то получается, что обнаруженные галактики появились всего-то спустя 650-700 миллионов лет после Большого взрыва. Разумеется, мы видим не сами эти галактики, а лишь их свет, который наконец-то добрался до Земли

Таким образом, на фотографии отображены события, которые происходили в первый миллиард лет жизни нашей Вселенной. По оценкам учёных, на том этапе эволюции она была на порядок меньше своих сегодняшних размеров, а находившиеся в ней объекты располагались ближе друг к другу. Некоторые из сфотографированных галактик напрочь лишены чёткой внутренней структуры, присущей нашей галактике. Другие - явно переживают период столкновения, когда чудовищные гравитационные силы придают им необычную форму.

Регион древнейших галактик астрономы условно называют Ultra Deep Field. Он находится чуть ниже созвездия Ориона.

ТУМАННОСТЬ КОНСКАЯ ГОЛОВА

Туманность Конская Голова (или Barnard 33) находится в созвездии Ориона на расстоянии около 1600 световых лет от Земли. Её линейный размер - 3,5 световых года. Она - часть огромного газопылевого комплекса, названного Облаком Ориона. Эта туманность известна даже людям, далёким от астрономии, ведь она и впрямь похожа на конскую голову. Красное свечение голове придает ионизация водорода, находящегося за туманностью, под действием излучения от ближайшей яркой звезды - Альнитак. Истекающий из туманности газ движется в сильном магнитном поле. Яркие пятна в основании туманности Конская Голова - это молодые звёзды, находящиеся в процессе формирования. Благодаря своей необычной форме туманность привлекает внимание: её часто рисуют и фотографируют. Наверное, именно поэтому снимок Конской Головы, сделанный «Хабблом», был признан лучшим по итогам голосования пользователей интернета.

ГАЛАКТИКА СОМБРЕРО

Сомбреро (М104) - это спиральная галактика в созвездии Девы, которая находится на расстоянии 28 миллионов световых лет от нас. Диаметр галактики - 50 тысяч световых лет. Свое название она получила благодаря выступающей центральной части (балджу) и ребру из тёмного вещества (не путать с тёмной материей!), придающим галактике сходство с мексиканской шляпой. Центральная часть галактики излучает во всех диапазонах электромагнитного спектра. Как установили учёные, там находится гигантская чёрная дыра, масса которой в миллиард раз превосходит солнечную. Пылевые кольца M104 содержат большое количество молодых ярких звёзд и обладают крайне сложной структурой, которая пока не поддаётся объяснению.

Снимок галактики Сомбреро был признан лучшим снимком «Хаббла» по мнению астрономов, опрошенных корреспондентами британской газеты Daily Mail. Наверное, своим выбором астрономы хотели сказать, что познание Вселенной не сводится к кропотливому изучению тысяч фотографий звёздного неба, к построению графиков и к бесконечным вычислениям. Познавая Вселенную, мы ещё и наслаждаемся её фантастической красотой. И в этом нам помогает уникальное творение человеческих рук - орбитальный телескоп «Хаббл».

Эдвин Пауэлл Хаббл - выдающийся американский астроном ХХ века. Родился 20 ноября 1889 года в Маршфилде (штат Миссури). Умер 28 сентября 1953 года в Сан-Марино (штат Калифорния). Основные труды Хаббла посвящены изучению галактик.

  • В 1922 году Хаббл предложил разделить наблюдаемые туманности на внегалактические (галактики) и галактические (газопылевые).
  • В 1923 году учёный ввёл классификацию внегалактических туманностей, разделив их на эллиптические, спиральные и иррегулярные.
  • В 1924-м астроном выявил на фотографиях некоторых ближайших галактик звёзды, из которых они состоят, чем доказал: галактики представляют собой звёздные системы, подобные Млечному Пути.
  • В 1929 году Хаббл обнаружил зависимость между красным смещением в спектре галактик и расстоянием до них (закон Хаббла). Он вычислил коэффициент, связывающий расстояние до галактики со скоростью её удаления (постоянная Хаббла). Разбегание галактик стало прямым доказательством того, что Вселенная возникла в результате Большого взрыва и продолжает быстро расширяться.

Космический телескоп Хаббл (названный в честь Эдвина Хаббла) - автономная обсерватория, вращающаяся на околоземной орбите, совместный проект NASA и Европейского космического агентства. В космосе телескопы размещаются для того, чтобы регистрировать электромагнитное излучение в диапазонах, которые не пропускает земная атмосфера. Хаббл проработал почти 15 лет (с 1990 года) и продолжает работать (хотя основная миссия завершена и ее продолжают коллеги Хаббла - Спитцер и Кеплер, запущенные в 2003 и 2009 годах соответственно). Колоссальный по своей значимости проект, с помощью которого было проверено несметное множество теорий и совершено огромное число открытий. Карты Плутона и Эриды, высококачественные изображения комет, подтверждение гипотезы об изотропности Вселенной, открытие нового спутника Нептуна - Хаббл принес столько данных, что их изучение продолжается и продолжается.

В конце 2018 года космический зонд OSIRIS-Rex вышел на орбиту астероида Бенну и раскрыл интересные особенности о его структуре. Казалось бы, при такой близости аппарата, все новые открытия должны делаться только при помощи его бортового оборудования, но нет. Исследователи обнаружили, что скорость вращения астероида постоянно нарастает - эта особенность была зафиксирована не зондом, а наземными телескопами и обсерваторией «Хаббл». После такого открытия у исследователей возникли новые вопросы и предположения.

Есть признаки того, что впечатляющие снимки туманностей и галактик, которыми порадовало любителей астрономии американское космическое агентство NASA, могли быть сделаны с телескопа, расположенного на стратосферном самолете наподобие SOFIA. Каковы же эти признаки?

1. Зеркало телескопа Хаббл имеет диаметр 2,4 метра. Тот же диаметр имеет стратосферный телескоп SOFIA, расположенный на модифицированном самолете Боинг-747 . Это само по себе еще ничего не доказывает, но факт остается фактом.

Самолет летает на высоте до 14 км, тогда как наземные высокогорные телескопы находятся на значительно меньшей высоте.

Обсерватория на горе Чакалтая, Боливия, открытая в 1962г., расположена на высоте 5200 м. В ней ни одного телескопа, а установлены только приемники гамма-излучения. (с) Книга рекордов Гиннеса.

Соответственно, должно быть высоким качество получаемых снимков – значительная часть атмосферы (а также облака, пыль и восходящие потоки нагретого воздуха) по большей части - далеко внизу. В частности, 99% водяного пара, который мешает производить инфракрасные наблюдения, остается ниже "Софии". А обслуживать такой телескоп гораздо проще, чем космический аппарат.

Официально самолетный телескоп SOFIA в настоящее время находится в стадии испытаний (первый испытательный полет состоялся 26 апреля 2007 года), однако, ничто не мешало NASA запускать такие самолеты (неофициально) и раньше.

2. Качественные ультрафиолетовые снимки нельзя сделать с самолета
Заявлено, что Хаббл делает снимки в инфракрасном, видимом и ультрафиолетовом диапазонах. Но с самолета качественные ультрафиолетовые снимки не сделаешь - именно этот диапазон в значительной степени ослабляется озоновым слоем стратосферы (этот слой атмосферы, который задерживает УФ-лучи, расположен на высоте от 15–20 до 55–60 км, аккурат выше высоты подъема самолетного телескопа наподобие SOFIA).

Поэтому, ультрафиолетовые снимки хорошего качества должны были бы разрешить наши сомнения. Казалось бы, качественные ультрафиолетовые снимки можно легко найти на сайте NASA, но не тут-то было! Они либо имеют отвратительное качество (как будто именно ультрафиолетовые снимки делали зеркалом значительно меньшего диаметра), либо их нет вовсе.

HubbleSite - NewsCenter - Jupiter"s Comet Collision Sites As Seen in Visible and Ultraviolet Light (07/18/1994) - Release Images

This comparison of visible light (blue) and far-ultraviolet (FUV) images of Jupiter taken with the Wide Field Planetary Camera-2 (WFPC-2) on NASA"S Hubble Space Telescope show how the appearance of the planet and of comet Shoemaker-Levy-9 impact sites differ at these two wavelengths (1400-2100 and 3100-3600 Angstroms). The images taken 20 minutes apart on July 17,1994 (around 19:00 UT), show the impact sites on the south hemisphere, from left to right, of comet fragments C, A and E, about 12, 23, and 4 hours after each collision. // Дальше - hubblesite.org
Заметим, что ультрафиолетовый снимок Юпитера значительно хуже по качеству. Почему бы это, как Вы думаете?

3. Знаменитые снимки Хаббла, которые поражают своим качеством и разрешением, сделаны в видимых и инфракрасных лучах.

То есть, ничто не мешало бы сделать их и с самолета.

В качестве примера приведу знаменитый снимок туманности Орла (Eagle Nebula) - он сделан в видимых лучах.


(щелкните на эту ссылку, чтобы увидеть отдельные спектральные составляющие снимка).

Галактика Galaxy ESO 510-G13 снята в натуральных цветах

А есть ли в наличии у NASA качественные снимки, сделанные именно в ультрафиолетовых лучах, недостижимых для самолета?

4. Снимки Юпитера в ультрафиолетовых лучах

Есть, однако, более или менее качественные снимки Юпитера, сделанные якобы Хабблом в ультрафиолетовых лучах:

HubbleSite - NewsCenter - Hubble Ultraviolet Image of Multiple Comet Impacts on Jupiter (07/23/1994) - Release Images

Ultraviolet image of Jupiter taken by the Wide Field Camera of the Hubble Space Telescope. The image shows Jupiter"s atmosphere at a wavelength of 2550 Angstroms after many impacts by fragments of comet Shoemaker-Levy 9. The most recent impactor is fragment R which is below the center of Jupiter (third dark spot from the right). This photo was taken 3:55 EDT on July 21, about 2.5 hours after R"s impact. A large dark patch from the impact of fragment H is visible rising on the morning (left) side. Proceeding to the right, other dark spots were caused by impacts of fragments Ql, R, D and G (now one large spot), and L, with L covering the largest area of any seen thus far. // Дальше - hubblesite.org
Однако, точно такие же снимки делал аккурат в то же время (22 июля 1994 года) пролетающий мимо Юпитера зонд «Галилео».
Я поставил рядом фотки, сделанные «Галилео» и «Хабблом», повернув Юпитер под одним и тем же углом зрения. Правда, похоже?
http://x-romix.narod.ru/nasa/galileo_hubble.png

Юпитер быстро вращается (делает полный оборот за 9 земных часов и 56 мин.).
Отличить снимки можно было бы по терминатору (положению не освещенной Солнцем части Юпитера), однако на хаббловских снимках он почему-то отрезан. Как вы думаете, почему NASA отрезало то место снимка, где должен быть терминатор? Не потому ли, что эта часть кадра выдала бы истинное происхождение снимка?

5. Кривое зеркало

Если в будущем кто-то (например, Россия или Китай), выведет на орбиту телескоп с большим зеркалом, и сделает значительно более качественные снимки в ультрафиолетовом диапазоне, у NASA всегда наготове отмазка: постоянные поломки Хаббла (какая жалость) и первоначальный дефект главного зеркала (поставили лишнюю шайбу).

Комиссия, возглавляемая Лю Алленом (англ. Lew Allen), директором Лаборатории реактивного движения установила, что дефект возник в результате ошибки при монтаже главного нуль-корректора, полевая линза которого была сдвинута на 1,3 мм относительно правильного положения. Сдвиг произошёл по вине техника, осуществлявшего сборку прибора. Он ошибся при работе с лазерным измерителем, применявшимся для точного размещения оптических элементов прибора, а когда после окончания монтажа заметил непредвиденный зазаор между линзой и поддерживающей её конструкцией, то просто вставил обычную металлическую шайбу.

6. Хаббл сделан в единственном экземпляре
Еще один уличающий признак: Хаббл сделан в единственном экземпляре. Но что было бы в случае неудачи, которую нельзя устранить? Известно, что штамповать уже готовое и отлаженное решение, внося лишь необходимые коррективы, в десятки и сотни раз дешевле, чем первоначальный образец. Так, Россия продолжает десятками лет производить одни и те же Протоны и Союзы. Что бы помешало наштамповать несколько хабблов, и делать ими качественные снимки? Ведь второй и последующие аппараты гораздо дешевле первого, а наличие нескольких устройств на орбите позволяет выполнить больший объем работ, и снимать астрономические события, которые оказываются скрытыми близкой Землей. «Конкуренция за время наблюдений очень высока, обычно суммарно запрошенное время в 6 - 9 раз превышает реально доступное» (там же).
http://moon.thelook.ru/book/15.htm

Согласно данным НАСА, затраты на программу "Аполлон" составили 20-25 миллиардов долларов . Известно, что при разработке новых технологий или изделий первые образцы стоят дорого, но стоимость производства последующих образцов начинает резко снижаться. Возьмём ту же самую ракету «Сатурн-5». Её разработка, а, значит, и первый экземпляр стоили около 7 млрд. $. Но уже последующие экземпляры стоили по 0,4 млрд. за штуку . Повторять всегда дешевле.

7. Конская голова
Интересная фраза в описании снимка туманности «Конская голова» (Horsehead Nebula):

"This 11th anniversary release image was composed by the Hubble Heritage Team, which superimposed Hubble data onto ground-based data (limited to small triangular regions around the outer edge of the image). Ground-based image courtesy of Nigel A. Sharp (NOAO/AURA/NSF) taken at the 0.9-meter telescope on Kitt Peak".

HubbleSite - NewsCenter - By Popular Demand: Hubble Observes the Horsehead Nebula (04/24/2001) - Release Images

Rising from a sea of dust and gas like a giant seahorse, the Horsehead nebula is one of the most photographed objects in the sky. NASA"s Hubble Space Telescope took a close-up look at this heavenly icon, revealing the cloud"s intricate structure. This detailed view of the horse"s head is being released to celebrate the orbiting observatory"s eleventh anniversary. Produced by the Hubble Heritage Project, this picture is a testament to the Horsehead"s popularity. Internet voters selected this object for the orbiting telescope to view. // Дальше - hubblesite.org
С какой-то радости подмешали к снимку 2.4-м Хаббла изображение с 0.9-метрового, да еще и наземного, телескопа Kitt Peak. Не указан диапазон волн, в котором сделан снимок. Нет других снимков, вырезан только кусок "конской головы".

8. Недавняя вспышка сверхновой GRB 060218 снималась вовсе не Хабблом. Угадайте, почему.

Элементы - новости науки: Сверхновая в прямом эфире

Объект, который сейчас с большим интересом наблюдают астрономы, не найти даже в сильный любительский телескоп, хотя излучает он как целая галактика. В полночь начала сентября на востоке можно увидеть восходящие созвездия Овна и Тельца. В созвездии Тельца есть группа звезд под названием Плеяды. В 10 градусах к западу от Плеяд и находится этот удивительный объект. // elementy.ru

18 февраля 2006 года обсерваторией «Свифт» был принят гамма-всплеск, получивший наименование (по дате) GRB060218, который длился целых 40 секунд (обычное время вспышек гамма-излучения - от миллисекунд до нескольких секунд). За это время удалось зафиксировать всплеск тремя инструментами «Свифта»: телескопом для регистрации гамма-всплесков Burst Alert Telescope (BAT) с приемником гамма-лучей, рентгеновским телескопом X-Ray Telescope (XRT) и телескопом, работающим в ультрафиолетовом и видимом диапазоне, - Ultra-violet/Optical Telescope (UVOT).

Диаметр зеркала телескопа Свифт больше похож на правду: 30 см.

"За вспышкой GRB 060218 также будут следить космические телескопы Hubble и Chandra, работающие, соответственно, в видимом и рентгеновском диапазонах длин волн".

Кто бы сомневался, что в видимом. Ведь с самолета не сделаешь качественные УФ снимки - мешает озоновый слой и стратосфера.