Решение систем линейных алгебраических уравнений в Excel Методы решения систем линейных алгебраических уравнений хорошо описаны в учебнике "Основы вычислительной математики. Демидович Б.П., Марон И.А. 1966". Скачать - 11Мб

1. Метод обратной матрицы (решение в Excel)

Если дано уравнение:
A*X = B, где A - квадратная матрица, X,B - вектора;
причем B - известный вектор (т е столбец чисел), X - неизвестный вектор,
то решение X можно записать в виде:
X = A -1 *B, где A -1 - обратная от А матрица.
В MS Excel обратная матрица вычисляется функцией МОБР(), а перемножаются матрицы (или матрица на вектор) - функцией МУМНОЖ().

Имеются "тонкости" использования этих матричных действий в Excel. Так, чтобы вычислить обратную матрицу от матрицы А, нужно:

1. Мышкой выделить квадратную область клеток, где будет размещена обратная матрица. 2. Начать вписывать формулу =МОБР(3. Выделить мышкой матрицу А. При этом правее скобки впишется соответствующий диапазон клеток. 4. Закрыть скобку, нажать комбинацию клавиш: Ctrl-Shift-Enter 5. Должна вычислиться обратная матрица и заполнить предназначенную для неё область Чтобы умножить матрицу на вектор: 1. Мышкой выделить область клеток, где будет размещён результат умножения 2. Начать вписывать формулу =МУМНОЖ(3. Выделить мышкой матрицу - первый сомножитель. При этом правее скобки впишется соответствующий диапазон клеток. 4. С клавиатуры ввести разделитель; (точка с запятой) 5. Выделить мышкой вектор- второй сомножитель. При этом правее скобки впишется соответствующий диапазон клеток. 6. Закрыть скобку, нажать комбинацию клавиш: Ctrl-Shift-Enter 7. Должно вычислиться произведение и заполнить предназначенную для него область Есть и другой спососб, при котором используется кнопка построителя функции Excel. Пример СЛАУ 4-го порядка

Скачать документ Excel, в котором этот пример решён различными методами.

2. Метод Гаусса

Метод Гаусса подробно (по шагам) выполняется только в учебных целях, когда нужно показать, что Вы это умеете. А чтобы решить реальную СЛАУ, лучше применить в Excel метод обратной матрицы или воспользоваться специальными программами, например, этой

Краткое описание.

3. Метод Якоби (метод простых итераций)

Для применения метода Якоби (и метода Зейделя) необходимо, чтобы диагональные компоненты матрицы А были больше суммы остальных компонент той же строки. Заданная система не обладает таким свойством, поэтому выполняю предварительные преобразования.

(1)’ = (1) + 0,43*(2) - 0,18*(3) – 0,96*(4) (2)’ = (2) + 0,28*(1) – 1,73*(3) + 0,12*(4) (3)’ = (3) – 0,27*(1) - 0,75*(2) + 0,08*(4) (4)’ = (4) + 0,04*(1) – 6,50*(2) + 8,04*(3) Примечание: подбор коэффицентов выполнен на листе "Анализ". Решаются системы уравнений, цель которых - обратить внедиагональные элементы в нуль. Коэффиценты - это округлённые результаты решения таких систем уравнений. Конечно, это не дело. В результате получаю систему уравнений:
Для применения метода Якоби систему уравнений нужно преобразовать к виду:
X = B2 + A2*X Преобразую:

Далее делю каждую строку на множитель левого столбца, то есть на 16, 7, 3, 70 соответственно. Тогда матрица А2 имеет вид:


А вектор В2:


» Урок 15. Решение СЛУ методом Крамера и методом Гаусса.

Урок 15. Решение СЛУ методом Крамера и методом Гаусса.

Метод Крамера

(СЛУ)
- определитель системы
Если определитель СЛУ отличен от нуля, тогда решение системы определяется однозначно по формулам Крамера:
, , ()
где:

Для этого в столбец, где стоит переменная х, а значит в первый столбец, вместо коэффициентов при х, ставим свободные коэффициенты, которые в системе уравнений стоят в правых частях уравнений
Для этого в столбец, где стоит переменная y (2 столбец), вместо коэффициентов при y, ставим свободные коэффициенты, которые в системе уравнений стоят в правых частях уравнений
Для этого в столбец, где стоит переменная z, а значит втретий столбец, вместо коэффициентов при z, ставим свободные коэффициенты, которые в системе уравнений стоят в правых частях уравнений

Задание 1. Решить СЛУ с помощью формул Крамера в Excel

Ход решения

1. Запишем уравнение в матричном виде:

2. Введите матрицу А и В в Excel.

3. Найдите определитель матрицы А. Он должен получится равным 30.

4. Определитель системы отличен от нуля, следовательно - решение однозначно определяется по формулам Крамера.

5. Заполните значения dX, dY, dZ на листе Excel (см.рис.ниже).

6. Для вычисления значений dX, dY, dZ в ячейки F8, F12, F16 необходимо ввести функцию, вычисляющую определитель dX, dY, dZ соответственно.

7. Для вычисления значения X в ячейку I8 необходимо ввести формулу =F8/B5 (по формуле Крамера dX/|A|).

8. Самостоятельно введите формулы для вычисления Y и Z.

Задание 2 : самостоятельно найти решение СЛУ методом Крамера:

Формулы Крамера и матричный метод решения систем линейных уравнений не имеют серьезного практического применения, так как связаны с громоздкими выкладками. Практически для решения систем линейных уравнений чаще всего применяется метод Гаусса.

Метод Гаусса

Процесс решения по методу Гаусса состоит из двух этапов.

1. Прямой ход: система приводится к ступенчатому (в частности, треугольному) виду.

Для того чтобы решить систему уравнений выписывают расширенную матрицу этой системы

и над строками этой матрицы производят элементарные преобразования, приводя ее к виду, когда ниже главной диагонали будут располагаться нули.
Разрешается выполнять элементарные преобразования над матрицами.
С помощью этих преобразований каждый раз получается расширенная матрица новой системы, равносильной исходной, т.е. такой системы, решение которой совпадает с решением исходной системы.

2. Обратный ход: идет последовательное определение неизвестных из этой ступенчатой системы.

Пример. Установить совместность и решить систему

Решение.
Прямой ход: Выпишем расширенную матрицу системы и поменяем местами первую и вторую строки для того, чтобы элемент равнялся единице (так удобнее производить преобразования матрицы).



.

Имеем Ранги матрицы системы и ее расширенной матрицы совпали с числом неизвестных. Согласно теореме Кронекера-Капелли система уравнений совместна и решение ее единственно.
Обратный ход: Выпишем систему уравнений, расширенную матрицу которой мы получили в результате преобразований:

Итак, имеем .
Далее, подставляя в третье уравнение, найдем .
Подставляя и во второе уравнение, получим .
Подставляя в первое уравнение найденные получим .
Таким образом, имеем решение системы .

Решение СЛУ методом Гаусса в Excel:

В тексте будет предлагаться ввести в диапазон ячеек формулу вида: {=A1:B3+$C$2:$C$3} и т.п., это так-называемые «формулы массива». Microsoft Excel автоматически заключает ее в фигурные скобки ({ }). Для введения такого типа формул необходимо выделить весь диапазон, куда нужно вставить формулу, в первой ячейке ввести формулу без фигурных скобок (для примера выше – =A1:B3+$C$2:$C$3) и нажать Ctrl+Shift+Enter.
Пускай имеем систему линейных уравнений:

1. Запишем коэффициенты системы уравнений в ячейки A1:D4 а столбец свободных членов в ячейки E1:E4. Если в ячейке A1 находится 0, необходимо поменять строки местами так, чтоб в этой ячейке было отличное от ноля значение . Для большей наглядности можно добавить заливку ячеек, в которых находятся свободные члены.

2. Необходимо коэффициент при x1 во всех уравнениях кроме первого привести к 0. Для начала сделаем это для второго уравнения. Скопируем первую строку в ячейки A6:E6 без изменений, в ячейки A7:E7 необходимо ввести формулу: {=A2:E2-$A$1:$E$1*(A2/$A$1)}. Таким образом мы от второй строки отнимаем первую, умноженную на A2/$A$1, т.е. отношение первых коэффициентов второго и первого уравнения. Для удобства заполнения строк 8 и 9 ссылки на ячейки первой строки необходимо использовать абсолютные (используем символ $).

3. Копируем введенную формулу формулу в строки 8 и 9, таким образом избавляемся от коэффициентов перед x1 во всех уравнениях кроме первого.

4. Теперь приведем коэффициенты перед x2 в третьем и четвертом уравнении к 0. Для этого скопируем полученные 6-ю и 7-ю строки (только значения) в строки 11 и 12, а в ячейки A13:E13 введем формулу {=A8:E8-$A$7:$E$7*(B8/$B$7)}, которую затем скопируем в ячейки A14:E14. Таким образом реализуется разность строк 8 и 7, умноженных на коэффициент B8/$B$7. .

5. Осталось привести коэффициент при x3 в четвертом уравнении к 0, для этого вновь проделаем аналогичные действия: скопируем полученные 11, 12 и 13-ю строки (только значения) в строки 16-18, а в ячейки A19:E19 введем формулу {=A14:E14-$A$13:$E$13*(C14/$C$13)}. Таким образом реализуется разность строк 14 и 13, умноженных на коэффициент C14/$C$13. Не забываем проводить перестановку строк, чтоб избавиться от 0 в знаменателе дроби .

6. Прямая прогонка методом Гаусса завершена. Обратную прогонку начнем с последней строки полученной матрицы. Необходимо все элементы последней строки разделить на коэффициент при x4. Для этого в строку 24 введем формулу {=A19:E19/D19}.

7. Приведем все строки к подобному виду, для этого заполним строки 23, 22, 21 следующими формулами:

23: {=(A18:E18-A24:E24*D18)/C18} – отнимаем от третьей строки четвертую умноженную на коэффициент при x4 третьей строки.

22: {=(A17:E17-A23:E23*C17-A24:E24*D17)/B17} – от второй строки отнимаем третью и четвертую, умноженные на соответствующие коэффициенты.

21: {=(A16:E16-A22:E22*B16-A23:E23*C16-A24:E24*D16)/A16} – от первой строки отнимаем вторую, третью и четвертую, умноженные на соответствующие коэффициенты.

Результат (корни уравнения) вычислены в ячейках E21:E24.

Составитель: Салий Н.А.

В этой статье мы расскажем, как использовать формулы для решения систем линейных уравнений.

Вот пример системы линейных уравнений:
3x + 4y = 8
4x + 8y = 1

Решение состоит в нахождении таких значений х и у , которые удовлетворяют обоим уравнениям. Эта система уравнений имеет одно решение:
x = 7,5
y = -3,625

Количество переменных в системе уравнений должно быть равно количеству уравнений. Предыдущий пример использует два уравнения с двумя переменными. Три уравнения требуются для того, чтобы найти значения трех переменных (х ,у и z ). Общие действия по решению систем уравнений следующие (рис. 128.1).

  1. Выразите уравнения в стандартной форме. Если это необходимо, используйте основы алгебры и перепишите уравнение так, чтобы все переменные отображались по левую сторону от знака равенства. Следующие два уравнения идентичны, но второе приведено в стандартном виде:
    3x - 8 = -4y
    3x + 4y = 8 .
  2. Разместите коэффициенты в диапазоне ячеек размером n x n , где n представляет собой количество уравнений. На рис. 128.1 коэффициенты находятся в диапазоне I2:J3 .
  3. Разместите константы (числа с правой стороны от знака равенства) в вертикальном диапазоне ячеек. На рис. 128.1 константы находятся в диапазоне L2:L3 .
  4. Используйте массив формул для расчета обратной матрицы коэффициентов. На рис. 128.1 следующая формула массива введена в диапазон I6:J7 (не забудьте нажать Ctrl+Shift+Enter , чтобы ввести формулу массива): =МОБР(I2:J3) .
  5. Используйте формулу массива для умножения обратной матрицы коэффициентов на матрицу констант. На рис. 128.1 следующая формула массива введена в диапазон J10:JJ11 , который содержит решение (x = 7,5 и у = -3,625): =МУМНОЖ(I6:J7;L2:L3) . На рис. 128.2 показан лист, настроенный для решения системы из трех уравнений.

Сначала рассмотрим решение системы линейных уравнений методом Крамера . Для этого используем уже решенный пример 8 .

В EXCEL реализована функция вычисления определителей (см. п.7). Запишем матрицу коэффициентов и матрицы, полученные из нее заменой по очереди всех столбцов на столбец свободных членов. Листинг вычислений представлен на рис. 8:

Матрицы записаны в диапазонах

А значения определителей – в ячейках . Столбец свободных членов – в G2:G6. Решение системы – в I2:I6.

Тот же пример решим с помощью обратной матрицы . В EXCEL реализованы функции для нахождения обратных матриц и перемножения матриц (см. п.7). Листинг решения представлен на рис. 9. В диапазоне записана матрица коэффициентов, в ячейках – вектор свободных членов, в диапазоне обратная матрица, в ячейках – решение системы, полеченное как результат умножения матрицы на матрицу .

Предложим еще один способ решения линейных систем в EXCELL. Возможно, для систем он не покажется эффективным, однако знакомство с ним полезно для решения задач оптимизации, в частности задач линейного программирования. Инструментом для этого метода служит процедура Поиск решения, которая находится в Надстройках. После вызова процедуры появляется окно, представленное на рис. 11.

Покажем решение системы на примере.

Пример 12. Решить систему

В ячейки введена матрица коэффициентов уравнений системы, в – коэффициенты последнего уравнения, в ячейки G3:G6 - столбец свободных членов. Ячейки B1:E1 отведем для значений неизвестных. В ячейках F3:F6 сосчитаем сумму произведений коэффициентов каждого уравнения на неизвестные (для этого воспользуемся встроенной функцией СУММПРОИЗВ). Выберем ячейку F6 в качестве целевой и вызовем процедуру Поиск решения . В окошке установим, что целевая ячейка должна быть равной свободному члену последнего уравнения, и заполним поля. В поле «изменяя ячейки» введем B1:E1. В поле «ограничения» будем вводить первые уравнения. А именно, значение в ячейке F3 должно равняться заданному значению в ячейке G3 (1-е уравнение). Аналогично добавляем два других уравнения. После заполнения всех полей нажимаем .




























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тема “Решение математических задач средствами EXCEL”, является значимой в курсе “Информатика и информационные технологии”, которая возникает на различных этапах изучения предмета. Например, вычисления алгебраических выражений, решения квадратных уравнений в различных средах, построение графиков функций и т.д.

На протяжении почти всего курса математики учащиеся изучают различные методы решения уравнений и систем уравнений. Когда школьники изучат методы решения систем уравнений на уроках алгебры, на уроках информатики целесообразно рассмотреть дополнительные, более эффективные, по времени, инструменты для выполнения таких заданий. Данная тема не является сложной для учащихся, но очень трудоемкая для учителя, необходимо делать много записей на доске, фактически учитель весь урок стоит спиной к учащимся. Для оптимизации и эффективности учебной деятельности учителя на уроке была создана презентация, которая может применяться на любом этапе прохождения темы фрагментарно или полностью учителями математики, а особенно полезна учителям информатики из-за ограниченного количества часов по предмету.

Данный урок можно отнести к интегрированным урокам, построенным на деятельной основе с применением проблемно-исследовательской технологии. Ценность урока заключается в том, что ученики решают стандартные математические задачи нестандартным способом – применяя современные компьютерные технологии. Этим достигается мотивационная цель – побуждение интереса, показ необходимости знаний по математике и информатики в реальной жизни. На уроке ученики покажут владение компьютером, умение работать с пакетом программ Microsoft Office, знания, умения и навыки, полученные на уроках математики. В результате будет достигнута образовательная цель урока: по математики обобщение знаний по темам: “Матрицы. Действия с матрицами. Решение систем линейных уравнений методом Крамера, Гаусса”, по информатике у учащихся формируется навык работы с табличными формулами, познакомятся с возможностями Excel для решения различных уравнений и систем уравнений.

11 класс, информатика.

Тема: “Применение табличного процессора MS Excel для решения систем линейных алгебраических уравнений”.

Тема рассчитана на два урока.

Тип урока: комбинированный урок, совершенствование знаний, умений и навыков.

Вид урока: интегрированный.

Цели урока:

обучающие:

  • повторение и закрепление знаний учащихся математического аппарата по теме;
  • отработать умение переходить от математической записи выражений к записи в среде электронных таблиц;
  • продемонстрировать учащимся рациональность использования электронных таблиц для решения систем п линейных уравнений с п неизвестными;

Развитие внимания, памяти, представления, мышления, речи. Развитие интереса к предмету, навыка самостоятельной работы.

Развивающие и воспитательные:

  • формирование умений анализировать, выделять главное, сравнивать, строить аналогии;
  • развитие умения применять имеющиеся знания и умения в новой ситуации;
  • развивать гибкость мышления, отыскивать наиболее краткий путь достижения цели развивать целенаправленность, рациональность, критичность мышления.
  • умение устанавливать межпредметные связи.
  • формирование способностей, позволяющих осуществлять быструю смену видов учебной деятельности.

Формы организации познавательной деятельности: фронтальная, индивидуальная, групповая, коллективная.

Методы и приемы обучения: объяснительно-иллюстративный, проблемного изложения, наглядно-иллюстративный, практический, эвристическая беседа.

Оборудование: доска, компьютеры, мультимедийный проектор и экран, презентация, карточки с индивидуальным заданием, папка с электронным материалом для урока.

Средства обучения: презентация учителя MS PowerPoint “Решение математических задач средствами Excel”, ресурсы Интернет.

Компьютерное программное обеспечение: пакет программ Microsoft Office 2007.

Структура урока

Название этапа Приемы педагогической техники Время (мин.)
1 Организационный момент. Постановка цели урока и проблемы исследования Вступительное слово учителя. Рефлексия. Ознакомление с темой, постановка цели. 2
2 Актуализация опорных знаний Фронтальная работа с классом. Работа с формулами в Excel. Относительные и абсолютные ссылки. Применение логических функций. Приложение 2. 10
4 Изучение нового материала Формирование понятие табличной формулы.

Частично-поисковая работа.

Презентация учителя.

10
5 Подготовка к осмысление и применениеизученного материала. Повторение, обобщение математических знаний, дополненных демонстрацией новых функций Excel. Тренировочная практическая работа. Объяснительно - иллюстративный, повторение и обобщение необходимых знаний из математики с дополнениями новых функций в Excel. Эвристическая беседа

Презентация учителя.

Задания для практической работы. (Выполняется вместе с учителем. Приложение 3)

25
6 Закрепление (тренировка, отработка умений). Практическая работа. Беседа по вопросам из презентация учителя.

Практическая работа. Приложение 3.

25
10 Итог урока. Контроль. Анализ работы на уроке. Проверка достижений поставленной цели урока: обобщение изученного материала, выполнение практической работы, активность учащихся на всех этапах урока. 3
9 Постановка домашнего задания. Домашнее задание творческое. 3
11 Самооценка деятельности. Рефлексия. 2
Резерв времени 10 минут на индивидуальную работу при выполнении практической работы

Описание урока

1. Организационный момент.

  • Учитель сообщает учащимся тему и цель урока. Учащиеся записывают тему урока Слайд Титульный лист.
  • Рассказывает о том, как будет построен урок.
  • Знакомит с задачами, которые должны быть решены в ходе урока.

2. Актуализация опорных знаний.

Учитель. Для успешного проведения занятия по теме нам необходимо будет вспомнить и повторить материал из уроков математики “Методы решения линейных систем уравнений” и из информатики “Работа с формулами в Excel. Логические формулы. Относительные и абсолютные ссылки”.

Откройте файл D://Уроки_11/Решение СЛАУ/Приложение 2. У учащихся файл без листа Решение.

Заполните все поля таблицы.

Фронтальная работа с учащимися по проверки знаний и умений работы с формулами и функциями в Excel. На экране демонстрируется пример таблицы,

в которой необходимо заполнить все поля. Учащиеся предлагают алгоритмы заполнения полей. В тетради выписывают формулу для заполнения столбца K (победители, призеры), далее сравнивают свое решение с решением, представленным на экране (лист Решение, Приложение 2).

3. Изучение нового материала.

Учитель

Какие методы решения линейных уравнений вы знаете? Если не просмотрели файл выложенный в домашнее задание предыдущего урока, то можете открыть файл D://Уроки_11/Решение СЛАУ/Приложение 1 .

Учащиеся

Метод последовательного исключения неизвестных, метод Крамера.

Учитель

Посмотрите описание метода Крамера, с какими элементами нужно уметь работать при применении этого метода?

Учащиеся

С определителями.

Учитель

Т.е. с матрицами, на экране демонстрируется пример матрицы. Откройте файл D://Уроки_11/Решение СЛАУ/Приложение 3, лист Пример и выполните задание.

Учащиеся открывают документ Приложение 3 (лист Пример 1).

Выполняются задания, представленные на экране.

Учитель

Для работы с матрицами в Excel существуют специальные формулы, формулы для работы с массивом или их ещё называют табличные формулы.

Презентация. Слайд 3, 4. Учащиеся записывают понятие табличной формулы и особенности её ввода.

4. Подготовка к осмысление и применение изученного материала. Практическая работа.

Эвристическая беседа.

1. Для решения, каких задач можно применять табличные формулы?

Ответ может быть предопределен заданием, которое они выполняли – действия с матрицами, если решением должна получиться тоже матрица.

2. Дайте понятие матрицы? Может ли сказать, что любая прямоугольная таблица, заполненная числовыми значениями, есть матрица?

Ответ утвердительный. Слайд 5

3. Какие виды матриц вы знаете, чем они отличаются друг от друга? (заполнение, размерность и т.д.)

После обсуждения представить Слайд 6.

4. Можно ли с матрицами производить какие-либо действия?

Учащиеся могу перечислить некоторые действия с матрицами, сложение, умножение на число и т.д. Слайд 7.

Учитель информирует учащихся, о широких возможностях табличного процессора Excel для работы с матрицами.

Ученики записывают тему пункта темы Слайд8.

Повторение, обобщение математических знаний, дополненных демонстрацией новых функций Excel.

Презентация Слайды 9-14.

Демонстрация каждого слайда предопределяется вопросами по теме слайда.

В тетрадь учащиеся записывают только функции Excel для работы с матрицами и одновременно выполняют тренировочные практические задания из Приложение 3 Листы: пример 2, пример 3, пример 4. Подробно остановиться на примере 5, Приложение 3, Слайд 14.

Учитель

Теперь непосредственно перейдем к решению СЛАУ и познакомимся с методом, который вы рассматривали на уроках математики, это матричный метод. Слайд 16. Как вы думаете почему вы не решали системы матричным методом?

Учащиеся

Сложность вычисления обратной матрицы

Учитель

Запишите в тетрадь алгоритм решения системы матричным способом.

Откройте новую книгу Excel и решим вместе систему представленную на экране. Слайды 18-21.

Учитель открывает файл – заготовку упражнения и вместе с учащимися решает упражнение.

Решение сопровождается подробным объяснением. Решение учащихся сравнивается с предложенным решением в презентации. Слайды 18-21.

Учитель

Рассмотрим теперь решение СЛАУ методом Крамера, этот метод вам знаком, но на уроках математики вы решали, в основном, системы из двух уравнений с двумя неизвестными, почему? Слайд 22.

Ученики

Нужно много времени для вычисления определителей.

Учитель

Возможности Excel решают эту проблему. Откройте новый лист в книге и вместе решим систему уравнений представленную на экране.

Свои решения учащиеся сравнивают с решением, представленным в презентации. Слайды 23-25.

5. Закрепление (эвристическая беседа, тренировка, отработка умений).

Обсуждение темы по вопросам. Презентация. Слайд 26.

Практическая работа по группам: группа (практики) Приложение 3 Листы пример 6, пример 7, группа (технологи) Лист пример 8 решить систему методом Гаусса (можно воспользоваться Интернет-ресурсами), группа (программисты) создать программу на языке программирования Паскаль или С# решение системы уравнений методом Крамера, можно для ограниченного количества строк и столбцов.

6. Итог урока.

Проверка практической работы, обсудить проблемы в выполнении с каждой группой, если были выполнены не все задания, то откорректировать домашнее задание. Выставление оценок за урок.

Домашнее задание. На выбор:

1. (Приложение 4) Выполнить один из вариантов из карточки, разобрать программы решения систем уравнений на языке Паскаль из теоретического материала (Приложение 1)

2. Выполнить один из вариантов из карточки. Создать отдельно программу для решения систем методом Гаусса или матричным методом, группе программистов доработать программу метод Крамера.

7. Заключение.

Опыт работы с интегрированными уроками показывает, что у учащихся повышается качество знаний, оно может и не выражаться в оценках, но расширяется кругозор, развиваются творческие способности, повышается интерес к предметам, и вообще интерес к обучению, формируется убеждение, что учащиеся могут изучить больше, чем дается по программе.

Предложенное занятие по содержанию и выполнению заданий, кажется, насыщенным и перегруженным теорией и практическими упражнениями, но применение презентации, заготовок файлов (приложение 3) помогает выполнить все запланированные действия. Такое занятие рекомендуется проводить в математических классах, когда учащиеся уже изучили методы решения СЛАУ. За неделю до изучения этой темы выложить в эл. дневник, для ознакомления, информационный материал по методам решения систем уравнений и описание создания программ для решения систем уравнений на языке программирования.

Литература

1. Воронина Т.П. Образование в эпоху новых информационных технологий / Т.П. Воронина.- М.: АМО, 2008. -147 с.

2. Глинская Е. А. Межпредметные связи в обучении / Е.А. Глинская, С.В. Титова. – 3-е изд. – Тула: Инфо, 2007. - 44 с.

3. Данилюк Д. Я. Учебный предмет как интегрированная система /Д.Я. Данилюк //Педагогика. - 2007. - № 4. - С. 24-28.

4. Иванова М.А. Межпредметные связи на уроках информатики / М.А. Иванова, И.Л. Карева // Информатика и образование. – 2005. - №5. – С. 17-20.

5. А.В. Могилев, Н.И. Пак, Е.К. Хеннер "Информатика", Москва, ACADEMA, 2000 г.

6. С.А. Немнюгин, "Турбо ПАСКАЛЬ", Практикум, Питер, 2002 г.