История освоения космоса - самый яркий пример торжества человеческого разума над непокорной материей в кратчайший срок. С того момента, как созданный руками человека объект впервые преодолел земное притяжение и развил достаточную скорость, чтобы выйти на орбиту Земли, прошло всего лишь чуть более пятидесяти лет - ничто по меркам истории! Большая часть населения планеты живо помнит времена, когда полёт на Луну считался чем-то из области фантастики, а мечтающих пронзить небесную высь признавали, в лучшем случае, неопасными для общества сумасшедшими. Сегодня же космические корабли не только «бороздят просторы», успешно маневрируя в условиях минимальной гравитации, но и доставляют на земную орбиту грузы, космонавтов и космических туристов. Более того - продолжительность полёта в космос ныне может составлять сколь угодно длительное время: вахта российских космонавтов на МКС, к примеру, длится по 6-7 месяцев. А ещё за прошедшие полвека человек успел походить по Луне и сфотографировать её тёмную сторону, осчастливил искусственными спутниками Марс, Юпитер, Сатурн и Меркурий, «узнал в лицо» отдалённые туманности с помощью телескопа «Хаббл» и всерьёз задумывается о колонизации Марса. И хотя вступить в контакт с инопланетянами и ангелами пока не удалось (во всяком случае, официально), не будем отчаиваться - ведь всё ещё только начинается!

Мечты о космосе и пробы пера

Впервые в реальность полёта к дальним мирам прогрессивное человечество поверило в конце 19 века. Именно тогда стало понятно, что если летательному аппарату придать нужную для преодоления гравитации скорость и сохранять её достаточное время, он сможет выйти за пределы земной атмосферы и закрепиться на орбите, подобно Луне, вращаясь вокруг Земли. Загвоздка была в двигателях. Существующие на тот момент экземпляры либо чрезвычайно мощно, но кратко «плевались» выбросами энергии, либо работали по принципу «ахнет, хряснет и пойдёт себе помаленьку». Первое больше подходило для бомб, второе - для телег. Вдобавок регулировать вектор тяги и тем самым влиять на траекторию движения аппарата было невозможно: вертикальный старт неизбежно вёл к её закруглению, и тело в результате валилось на землю, так и не достигнув космоса; горизонтальный же при таком выделении энергии грозил уничтожить вокруг всё живое (как если бы нынешнюю баллистическую ракету запустили плашмя). Наконец, в начале 20 века исследователи обратили внимание на ракетный двигатель, принцип действия которого был известен человечеству ещё с рубежа нашей эры: топливо сгорает в корпусе ракеты, одновременно облегчая её массу, а выделяемая энергия двигает ракету вперёд. Первую ракету, способную вывести объект за пределы земного притяжения, спроектировал Циолковский в 1903 году.

Вид на Землю с МКС

Первый искусственный спутник

Время шло, и хотя две мировые войны сильно замедлили процесс создания ракет для мирного использования, космический прогресс всё же не стоял на месте. Ключевой момент послевоенного времени - принятие так называемой пакетной схемы расположения ракет, применяемой в космонавтике и поныне. Её суть - в одновременном использовании нескольких ракет, размещённых симметрично по отношению к центру массы тела, которое требуется вывести на орбиту Земли. Таким образом обеспечивается мощная, устойчивая и равномерная тяга, достаточная, чтобы объект двигался с постоянной скоростью 7,9 км/с, необходимой для преодоления земного тяготения. И вот 4 октября 1957 года началась новая, а точнее первая, эра в освоении космоса - запуск первого искусственного спутника Земли, как всё гениальное названного просто «Спутник-1», с помощью ракеты Р-7, спроектированной под руководством Сергея Королёва. Силуэт Р-7, прародительницы всех последующих космических ракет, и сегодня узнаваем в суперсовременной ракете-носителе «Союз», успешно отправляющей на орбиту «грузовики» и «легковушки» с космонавтами и туристами на борту - те же четыре «ноги» пакетной схемы и красные сопла. Первый спутник был микроскопическим, чуть более полуметра в диаметре и весил всего 83 кг. Полный виток вокруг Земли он совершал за 96 минут. «Звёздная жизнь» железного пионера космонавтики продлилась три месяца, но за этот период он прошёл фантастический путь в 60 миллионов км!

Первые живые существа на орбите

Успех первого запуска окрылял конструкторов, и перспектива отправить в космос живое существо и вернуть его целым и невредимым уже не казалась неосуществимой. Всего через месяц после запуска «Спутника-1» на борту второго искусственного спутника Земли на орбиту отправилось первое животное - собака Лайка. Цель у неё была почётная, но грустная - проверить выживаемость живых существ в условиях космического полёта. Более того, возвращение собаки не планировалось… Запуск и вывод спутника на орбиту прошли успешно, но после четырёх витков вокруг Земли из-за ошибки в расчётах температура внутри аппарата чрезмерно поднялась, и Лайка погибла. Сам же спутник вращался в космосе ещё 5 месяцев, а затем потерял скорость и сгорел в плотных слоях атмосферы. Первыми лохматыми космонавтами, по возвращении приветствовавшими своих «отправителей» радостным лаем, стали хрестоматийные Белка и Стрелка, отправившиеся покорять небесные просторы на пятом спутнике в августе 1960 г. Их полёт длился чуть более суток, и за это время собаки успели облететь планету 17 раз. Всё это время за ними наблюдали с экранов мониторов в Центре управления полётами - кстати, именно по причине контрастности были выбраны белые собаки - ведь изображение тогда было чёрно-белым. По итогам запуска также был доработан и окончательно утверждён сам космический корабль - всего через 8 месяцев в аналогичном аппарате в космос отправится первый человек.

Помимо собак и до, и после 1961 г в космосе побывали обезьяны (макаки, беличьи обезьяны и шимпанзе), кошки, черепахи, а также всякая мелочь – мухи, жуки и т. д.

В этот же период СССР запустил первый искусственный спутник Солнца, станция «Луна-2» сумела мягко прилуниться на поверхность планеты, а также были получены первые фотографии невидимой с Земли стороны Луны.

День 12 апреля 1961 г. разделил историю освоения космических далей на два периода - «когда человек мечтал о звёздах» и «с тех пор, как человек покорил космос».

Человек в космосе

День 12 апреля 1961 г. разделил историю освоения космических далей на два периода - «когда человек мечтал о звёздах» и «с тех пор, как человек покорил космос». В 9:07 по московскому времени со стартовой площадки № 1 космодрома Байконур был запущен космический корабль «Восток-1» с первым в мире космонавтом на борту - Юрием Гагариным. Совершив один виток вокруг Земли и проделав путь в 41 тыс. км, спустя 90 минут после старта, Гагарин приземлился под Саратовом, став на долгие годы самым знаменитым, почитаемым и любимым человеком планеты. Его «поехали!» и «всё видно очень ясно - космос чёрный - земля голубая» вошли в список наиболее известных фраз человечества, его открытая улыбка, непринуждённость и радушие растопили сердца людей по всему миру. Первый полёт человека в космос управлялся с Земли, сам Гагарин являлся скорее пассажиром, хотя и великолепно подготовленным. Нужно отметить, что условия полёта были далеки от тех, что предлагаются ныне космическим туристам: Гагарин испытывал восьми-десятикратные перегрузки, был период, когда корабль буквально кувыркался, а за иллюминаторами горела обшивка и плавился металл. В течение полёта произошло несколько сбоев в различных системах корабля, но к счастью, космонавт не пострадал.

Вслед за полётом Гагарина знаменательные вехи в истории освоения космоса посыпались одна за другой: был совершён первый в мире групповой космический полёт, затем в космос отправилась первая женщина-космонавт Валентина Терешкова (1963 г), состоялся полёт первого многоместного космического корабля, Алексей Леонов стал первым человеком, совершившим выход в открытый космос (1965 г) - и все эти грандиозные события - целиком заслуга отечественной космонавтики. Наконец, 21 июля 1969 г состоялась первая высадка человека на Луну: американец Нил Армстронг сделал тот самый «маленький-большой шаг».

Лучший вид в Солнечной системе

Космонавтика - сегодня, завтра и всегда

Сегодня путешествия в космос воспринимаются как нечто само собой разумеющееся. Над нами летают сотни спутников и тысячи прочих нужных и бесполезных объектов, за секунды до восхода солнца из окна спальни можно увидеть вспыхнувшие в ещё невидимых с земли лучах плоскости солнечных батарей Международной космической станции, космические туристы с завидной регулярностью отправляются «бороздить просторы» (тем самым воплощая в реальность ерническую фразу «если очень захотеть, можно в космос полететь») и вот-вот начнётся эра коммерческих суборбитальных полётов с чуть ли не двумя отправлениями ежедневно. Освоение космоса управляемыми аппаратами и вовсе поражает всякое воображение: тут и снимки давно взорвавшихся звёзд, и HD-изображения дальних галактик, и веские доказательства возможности существования жизни на других планетах. Корпорации-миллиардеры уже согласовывают планы по строительству на орбите Земли космических отелей, да и проекты колонизации соседних нам планет давно не кажутся отрывком из романов Азимова или Кларка. Очевидно одно: однажды преодолев земное тяготение, человечество будет вновь и вновь стремиться ввысь, к бесконечным мирам звёзд, галактик и вселенных. Хочется пожелать только, чтобы нас никогда не покидала красота ночного неба и мириадов мерцающих звёзд, по-прежнему манящих, таинственных и прекрасных, как в первые дни творения.

Космос раскрывает свои тайны

Академик Благонравов остановился на некоторых новых достижениях советской науки: в области физики космоса.

Начиная со 2 января 1959 года, при каждом полете советских космических ракет проводилось исследование излучений на больших расстояниях от Земли. Детальному изучению подвергся открытый советскими учеными так называемый внешний радиационный пояс Земли. Изучение состава частиц радиационных поясов с помощью различных сцинтилляционных и газоразрядных счетчиков, находившихся на спутниках и космических ракетах, позволило установить, что во внешнем поясе присутствуют электроны значительных энергий до миллиона электронвольт и даже выше. При торможении в оболочках космических кораблей они создают интенсивное пронизывающее рентгеновское излучение. При полете автоматической межпланетной станции в сторону Венеры была определена средняя энергия этого рентгеновского излучения на расстояниях от 30 до 40 тысяч километров от центра Земли, составляющая около 130 килоэлектронвольт. Эта величина мало изменялась с изменением расстояния, что позволяет судить о постоянном энергетическом спектре электронов в этой области.

Уже первые исследования показали нестабильность внешнего пояса радиации, перемещения максимума интенсивности, связанные с магнитными бурями, вызываемыми солнечными корпускулярными потоками. Последние измерения с автоматической межпланетной станции, запущенной в сторону Венеры, показали, что хотя ближе к Земле происходят изменения интенсивности, но наружная граница внешнего пояса при спокойном состоянии магнитного поля практически на протяжении двух лет оставалась постоянной как по интенсивности, так и по пространственному расположению. Исследования последних лет позволили также построить модель ионизованной газовой оболочки Земли на основе экспериментальных данных для периода, близкого к максимуму солнечной деятельности. Наши исследования показали, что на высотах меньше тысячи километров основную роль играют ионы атомарного кислорода, а начиная с высот, лежащих между одной и двумя тысячами километров, в ионосфере превалируют ионы водорода. Протяженность самой внешней области ионизованной газовой оболочки Земли, так называемой водородной «короны», весьма велика.

Обработка результатов измерений, проведенных на первых советских космических ракетах, показала, что на высотах примерно от 50 до 75 тысяч километров за пределами внешнего радиационного пояса обнаружены потоки электронов с энергиями, превышающими 200 электронвольт. Это позволило предположить существование третьего самого внешнего пояса заряженных частиц с большой интенсивностью потоков, но меньшей энергией. После пуска в марте 1960 года американской космической ракеты «Пионер V» были получены данные, которые подтвердили наши предположения о существовании третьего пояса заряженных частиц. Этот пояс, по-видимому, образуется в результате проникновения солнечных корпускулярных потоков в периферийные области магнитного поля Земли.

Были получены новые данные в отношении пространственного расположения радиационных поясов Земли, обнаружена область повышенной радиации в южной части Атлантического океана, что связано с соответствующей магнитной земной аномалией. В этом районе нижняя граница внутреннего радиационного пояса Земли опускается до 250 – 300 километров от поверхности Земли.

Полеты второго и третьего кораблей-спутников дали новые сведения, которые позволили составить карту распределения радиации по интенсивности ионов над поверхностью земного шара. (Докладчик демонстрирует эту карту перед слушателями).

Впервые токи, создаваемые положительными ионами, входящими в состав солнечного корпускулярного излучения, были зарегистрированы вне магнитного поля Земли на расстояниях порядка сотен тысяч километров от Земли, при помощи трехэлектродных ловушек заряженных частиц, установленных на советских космических ракетах. В частности, на автоматической межпланетной станции, запущенной по направлению к Венере, были установлены ловушки, ориентированные на Солнце, одна из которых предназначалась для регистрации солнечного корпускулярного излучения. 17 февраля, во время сеанса связи с автоматической межпланетной станцией, было зарегистрировано прохождение ее через значительный поток корпускул (с плотностью порядка 10 9 частиц на квадратный сантиметр в секунду). Это наблюдение совпало с наблюдением магнитной бури. Такие опыты открывают пути к установлению количественных соотношений между геомагнитными возмущениями и интенсивностью солнечных корпускулярных потоков. На втором и третьем кораблях-спутниках была изучена в количественном выражении радиационная опасность, вызываемая космическими излучениями за пределами земной атмосферы. Эти же спутники были использованы для исследования химического состава первичного космического излучения. Новая аппаратура, установленная на кораблях-спутниках, включала фотоэмульсионный прибор, предназначенный для экспонирования и проявления непосредственно на борту корабля стопки толстослойных эмульсий. Полученные результаты имеют большую научную ценность для выяснения биологического влияния космических излучений.

Технические проблемы полета

Далее докладчик остановился на ряде существенных проблем, обеспечивших организацию полета человека в космос. Прежде всего надо было решить вопрос о методах выведения на орбиту тяжелого корабля, для чего нужно было иметь мощную ракетную технику. Такая техника у нас создана. Однако недостаточно было сообщить кораблю скорость, превышающую первую космическую. Необходима была еще и высокая точность выведения корабля на заранее рассчитанную орбиту.

Следует иметь в виду, что требования к точности движения по орбите в дальнейшем будут повышаться. Это потребует проведения коррекции движения с помощью специальных двигательных установок. К проблеме коррекции траекторий примыкает проблема маневра направленного изменения траектории полета космического аппарата. Маневры могут осуществляться с помощью импульсов, сообщаемых реактивным двигателем на отдельных специально выбранных участках траекторий, либо с помощью тяги, действующей длительное время, для создания которой применены двигатели электрореактивного типа (ионные, плазменные).

В качестве примеров маневра можно указать переход на более высоко лежащую орбиту, переход на орбиту, входящую в плотные слои атмосферы для торможения и посадки в заданном районе. Маневр последнего типа применялся при посадке советских кораблей-спутников с собаками на борту и при посадке корабля-спутника «Восток».

Для осуществления маневра, выполнения ряда измерений и для других целей необходимо обеспечить стабилизацию корабля-спутника и его ориентацию в пространстве, сохраняемую в течение определенного промежутка времени или изменяемую по заданной программе.

Переходя к проблеме возвращения на Землю, докладчик остановился на следующих вопросах: торможение скорости, защита от нагрева при движении в плотных слоях атмосферы, обеспечение приземления в заданном районе.

Торможение космического аппарата, необходимое для гашения космической скорости, может быть осуществлено либо с помощью специальной мощной двигательной установки, либо посредством торможения аппарата в атмосфере. Первый из этих способов требует весьма больших запасов веса. Использование сопротивления атмосферы для торможения позволяет обойтись сравнительно небольшими дополнительными весами.

Комплекс проблем, связанных с разработкой защитных покрытий при торможении аппарата в атмосфере и организацией процесса входа с приемлемыми для организма человека перегрузками, представляет собой сложную научно-техническую задачу.

Бурное развитие космической медицины поставило на повестку дня вопрос о биологической телеметрии как об основном средстве врачебного контроля и научного медицинского исследования во время космического полета. Использование радиотелеметрии накладывает специфический отпечаток на методику и технику медико-биологических исследований, поскольку к аппаратуре, размещаемой на борту космических кораблей, предъявляется ряд специальных требований. Эта аппаратура должна иметь очень небольшой вес, малые габариты. Она должна быть рассчитана на минимальное энергопотребление. Кроме того, бортовая аппаратура должна устойчиво работать на активном участке и при спуске, когда действуют вибрации и перегрузки.

Датчики, предназначенные для преобразования физиологических параметров в электрические сигналы, должны быть миниатюрными, рассчитанными на длительную работу. Они не должны создавать неудобств космонавту.

Широкое применение радиотелеметрии в космической медицине заставляет исследователей обратить серьезное внимание на конструирование такой аппаратуры, а также на согласование объема необходимой для передачи информации с емкостью радиоканалов. Поскольку новые задачи, стоящие перед космической медициной, приведут к дальнейшему углублению исследований, к необходимости значительного увеличения количества регистрируемых параметров, потребуется внедрение систем, запоминающих информации, и методов кодирования.

В заключение докладчик остановился на вопросе о том, почему для первого космического путешествия был выбран именно вариант облета Земли по орбите. Этот вариант представлял собою решительный шаг к завоеванию космического пространства. Им обеспечивалось исследование вопроса о влиянии длительности полета на человека, решалась задача управляемого полета, задача управления спуском, вхождения в плотные слои атмосферы и благополучного возвращения на Землю. По сравнению с этим полет, осуществленный недавно в США, представляется малоценным. Он мог иметь значение как промежуточный вариант для проверки состояния человека при этапе набора скорости, при перегрузках во время спуска; но после полета Ю. Гагарина в такой проверке уже не было надобности. В этом варианте эксперимента безусловно преобладал элемент сенсации. Единственную ценность этого полета можно видеть в проверке действия разработанных систем, обеспечивающих вхождение в атмосферу и приземление, но, как мы видели, проверка подобных систем, разработанных у нас в Советском Союзе для более сложных условий, была надежно осуществлена еще ранее первого космического полета человека. Таким образом, ни в какое сравнение не могут быть поставлены достижения, полученные у нас 12 апреля 1961 г., с тем, что до настоящего времени оказалось достигнуто в США.

И как бы ни старались, говорит академик, враждебно настроенные по отношению к Советскому Союзу люди за рубежом своими измышлениями умалить успехи нашей науки и техники, весь мир оценивает эти успехи должным образом и видит, насколько вырвалась наша страна вперед по пути технического прогресса. Я лично был свидетелем того восторга и восхищения, которые были вызваны известием об историческом полете нашего первого космонавта среди широких масс итальянского народа.

Полет прошел исключительно успешно

Доклад о биологических проблемах космических полетов сделал академик Н. М. Сисакян. Он охарактеризовал основные этапы развития космической биологии и подвел некоторые итоги научных биологических исследований, связанных с космическими полетами.

Докладчик привел медико-биологические характеристики полета Ю. А. Гагарина. В кабине поддерживалось барометрическое давление в пределах 750 – 770 миллиметров ртутного столба, температура воздуха – 19 – 22 градуса Цельсия, относительная влажность – 62 – 71 процент.

В предстартовом периоде, примерно за 30 минут до старта космического корабля, частота сердечных сокращений составила 66 в минуту, частота дыхания – 24. За три минуты до старта некоторое эмоциональное напряжение проявилось в увеличении частоты пульса до 109 ударов в минуту, дыхание продолжало оставаться ровным и спокойным.

В момент старта корабля и постепенного набора скорости частота сердцебиения возросла до 140 – 158 в минуту, частота дыхания составляла 20 – 26. Изменения физиологических показателей на активном участке полета, по данным телеметрической записи электрокардиограмм и пнеймограмм, были в допустимых пределах. К концу активного участка частота сердечных сокращений составила уже 109, а дыхания – 18 в минуту. Иными словами, эти показатели достигли значений, характерных для ближайшего к старту момента.

При переходе к невесомости и полете в этом состоянии показатели сердечно-сосудистой и дыхательной систем последовательно приближались к исходным значениям. Так, уже на десятой минуте невесомости частота пульса достигла 97 ударов в минуту, дыхания – 22. Работоспособность не нарушилась, движения сохранили координацию и необходимую точность.

На участке спуска, при торможении аппарата, когда вновь возникали перегрузки, были отмечены кратковременные, быстро преходящие периоды учащения дыхания. Однако уже при подходе к Земле дыхание стало ровным, спокойным, с частотой около 16 в минуту.

Через три часа после приземления частота сердечных сокращений составляла 68, дыхание – 20 в минуту, т. е. величины, характерные для спокойного, нормального состояния Ю. А. Гагарина.

Все это свидетельствует о том, что полет прошел исключительно успешно, самочувствие и общее состояние космонавта на всех участках полета было удовлетворительным. Системы жизнеобеспечения работали нормально.

В заключение докладчик остановился на важнейших очередных проблемах космической биологии.

Классный час "День космонавтики"

Цели:

1. Познакомить учащихся с историей освоения космоса и с первыми космонавтами, расширить кругозор путём популяризации знаний о достижениях в области космонавтики.

2. Развивать познавательную и творческую активность, Прививать интерес к изучению космоса и истории космонавтики.

3. Воспитывать чувство патриотизма и гражданственности.

Оборудование: компьютер, мультимедийный проектор, экран, презентация «День космонавтики».

(Слайд 1) - заставка

(Слайд 2) видео - вступление 2 мин

(Слайд 3) Учитель.

12 апреля наша страна отмечает день космонавтики. Это всенародный праздник. Пройдут годы, десятилетия, века, люди забудут даты войн и революций, но этот день будут помнить всегда, и, я думаю, что именно этот день 12 апреля в недалеком будущем станет красной праздничной датой на все грядущие века. Ведь именно с этого дня – 12 апреля 1961 года - человек начал освоение космоса. Для нас кажется привычным, что стартуют с Земли космические корабли. В высоких небесных далях происходят стыковки космических аппаратов. Месяцами в космических станциях живут и трудятся космонавты, уходят к другим планетам автоматические станции. Вы можете сказать «что тут особенного»? Но ведь совсем недавно о космических полетах говорили как о фантастике. Сегодня мы, конечно, очень коротко, поговорим о том, как люди стали осваивать космическое пространство и почему именно 12 апреля мы отмечаем День космонавтики.

(Слайд 4) Ученик. С давних времен загадочный мир планет и звезд притягивал к себе внимание людей, манил их своей таинственностью и красотой.

Согласно древней мудрости:

Две вещи поражают нас больше всего - звезды над головой и совесть внутри нас …

(Слайд 5) Ученик

Раньше, давным-давно, когда люди только начинали узнавать Землю, они представляли ее перевернутой чашей, которая покоится на трех гигантских слонах, важно стоящих на панцире огромной черепахи. Эта чудо-черепаха плавает в море-океане, а весь мир накрыт хрустальным куполом неба со множеством сверкающих звезд.

Ученик.

С тех пор прошло несколько тысяч лет. На нашей Земле выросло много поколений добрых и умных людей. Они построили корабли и, совершив кругосветные путешествия, узнали, что Земля – шар. А астрономы доказали, что Земля летит в космосе, вращаясь вокруг Солнца.

(Слайд 7) Ученик.

Ракетная техника - далеко не новое понятие. К созданию мощных современных ракет-носителей человек шёл через тысячелетия мечтаний, фантазий, ошибок, поисков в различных областях науки и техники, накопления опыта и знаний.

Особое место среди русских проектов применения реактивного принципа полёта занимает проект Н. И. Кибальчича, известного русского революционера, оставившего несмотря на короткую жизнь(1853-1881), глубокий след в истории науки и техники. Имея обширные и глубокие знания по математике, физике и особенно химии, Кибальчич изготовлял самодельные снаряды и мины для народовольцев. «Проект воздухоплавательного прибора» был результатом длительной исследовательской работы Кибальчича над взрывчатыми веществами. Летательный аппарат Кибальчича должен был функционировать по принципу ракеты! Но т.к. Кибальчича посадили в тюрьму за покушение на Царя Александра II, то проект его летательного аппарата был обнаружен только в 1917 году в архиве департамента полиции.

(Слайд 8) Ученик.

К концу прошлого века идея применения для полётов реактивных приборов получила в России большие масштабы. И первым кто решил продолжить

(Слайд 6) Как все начиналось… видео (Помни! Мы сделали это первыми)

Автоматически - 3мин

исследования был наш великий соотечественник

Константин Эдуардович Циолковский (1857-1935) - учитель из Калуги, хорошо знавший физику, математику, химию, астрономию, механику. Он является автором проектов дирижаблей, работ в области аэродинамики и ракетной техники, одним из основоположников теории межпланетных сообщений с помощью ракет, разработчиком принципа ракетного движения. Многие из современников считали его безумцем. Ученый смог наметить путь, по которому человечество вышло в космос.

(слайд 9) (фильм Циолковский) 5мин

(слайд 10) Ученик. Изобретатель первых советских космических кораблей

  • Сергей Павлович Королев (1906 -1966) - российский ученый и конструктор. Под его руководством были созданы баллистические и геофизические ракеты, первые искусственные спутники Земли, первые космические корабли, на которых впервые в истории совершены космический полет человека и выход человека в космос.

(слайд 11) Важнейшие этапы освоения космоса

  • (слайд 12) Ученик. В 1955 году было принято решение о строительстве стартовой площадки для космических ракет. Это было в Казахстане, вдали от крупных населенных пунктов. Место нахождения космодрома – Байконур.
  • (слайд 13) Ученик. 4 октября 1957 - запущен первый искусственный спутник Земли Спутник-1 . (СССР).
  • (слайд 14) Ученик . 3 ноября 1957 - запущен второй искусственный спутник Земли Спутник-2 впервые выведший в космос живое существо - собаку Лайку . (СССР).
  • (слайд 15) Ученик . 20 августа 1960 года запущен космический корабль, на борту – собаки Стрелка и Белка.

(слайд 16-17) Ученик. 12 апреля 1961 года – день полета первого в мире космонавта, гражданина России Юрия Гагарина. День 12 апреля стал большим всенародным праздником в честь летчиков-космонавтов, конструкторов, инженеров, служащих и рабочих, которые создают ракеты, космические корабли и искусственные спутники Земли.

(слайд 18) Ученик.

Ах, этот день двенадцатый апреля,

Как он пронесся по людским сердцам!

Казалось, мир невольно стал добрее,

Своей победой потрясенный сам.

Какой гремел он музыкой вселенской,

Тот праздник, в пестром пламене знамен,

Ученик. В 1961 году, когда Юрий Гагарин, стал самым знаменитым человеком на Земле, ему было только двадцать семь лет. За 108 минут, пока проходил полет, жизнь Гагарина стала частью широкомасштабной легенды о великом советском человеке, который первым полетел в космос.

Кем был для всех нас Юрий Гагарин, первый космонавт планеты Земля? Своим парнем… Открытым, обаятельным, простым... Его жизнь была наполнена самой искренней любви всех людей планеты…

(слайд 20) Ученик . Гагарин родился в простой рабоче-крестьянской семье 9 марта 1934 года в г.Гжатске на Смоленщине. Семья была многодетная – четверо детей. Юра был третьим ребёнком. Семья Гагариных проживала в деревне Клушино. Родители работали в колхозе, дети рано приучались к работе по дому: уход за домашними животными, помощь родителям в поле. В те времена дети из крестьянский семей очень хотели учиться, Юра ещё не будучи школьником ходил со старшей сестрой в класс, участвовал в школьных вечерах- читал стихи.

(слайд 21) Ученик В первый класс Юра пошёл 1 сентября 1941 года, но в школе с 1 октября прекратились занятия, так как фронт приближался. Семья Гагариных не успела эвакуироваться и осталась «под немцем» на целых полтора года. В их доме поселились фашисты, а семья вынуждена была жить в землянке, которую вырыл наспех отец Юры. Старших детей – Валентина и Зою угнали в Германию. Весной 1943 года деревню освободили наши войска. 9 марта 1943 года возобновились занятия в школе. Поскольку школу немцы сожгли, уроки проводились у учительницы дома.

(слайд 22) Ученик Старшим детям удалось бежать из плена, причём Валентин попал в действующую армию, воевал танкистом, а Зоя служила санитаркой при госпитале, вернулась домой только в 1946 году. В 1946 году семья Гагариных переехала в г.Гжатск. Юра после 6 класса поступил в ремесленное училище в г.Люберцы – рядом с Москвой. Училище и седьмой класс вечерней школы Юра закончил с отличием. Затем был зачислен в Саратовский индустриальный техникум. В техникум Юрий серьёзно занялся спортом, увлекался театром и литературой и физикой, занимался в аэроклубе.

(слайд 23) Ученик После техникума Юрий Алексеевич поступил в Чкаловское авиационное училище. После училища работал в Заполярье. Работа у лётчика-полярника тяжёлая, но Юрию помогла его физическая закалка. Своим родственникам и близким Юрий Алексеевич ничего не говорил о полёте в космос. О том, что человек полетел в космос, семья Гагарина узнала из новостей 12 апреля 1961 года.

(слайд 24- 28 автоматически) (снимки Гагарина)на этом фоне стих

Ученик.

Далекие туманности клубя,

Всей красотою необыкновенной

Вселенная глядела на тебя,

И ты глядел в лицо Вселенной.

От угольно-холодной черноты,

От млечных вьюг

К людской согретой были

Советский человек, вернулся ты,

Не поседев от звездной пыли.

И Родина приветствует тебя,

И человечество стоит и рукоплещет,

И спину непокорную горбя,

Вселенная к тебе склонила плечи.

(Степан Щипачев).

(слайд 29) Звучит песня «Знаете, каким он парнем был»(клип – хроника видео) автоматически

(слайд 30) Ученик . По тропе, проложенной Гагариным, в космические дали устремились один за одним «Востоки», «Восходы», «Союзы», «Салюты» и «Прогрессы». Их пилотировали Герман Титов и Андриан Николаев, Алексей Леонов и Валентина Терешкова, Константин Феоктистов, Светлана Савицкая и еще более двухсот космонавтов-исследователей

Ученик.

Земля в огнях, и небо слепо,
Но к звездам рвутся корабли.
Мы завоевываем небо,
Для общей радости Земли.

(слайд 31-48) в автоматическом режиме песня «Созвездие Гагарина» (На экране фото первых космонавтов)

(слайд 49) Ученик.

  • 16 июня 1963 - совершён первый в мире полёт в космос женщины-космонавта (Валентина Терешкова ) на космическом корабле Восток-6 . (СССР).

Первой женщиной в космосе стала Валентина Терешкова. 16 июня 1963 года на борту корабля "Восток-6" она облетела Землю 48 раз, проведя в космосе 71 час -- больше, чем все астронавты НАСА вместе взятые к тому времени. Кроме того, Терешкова стала первым гражданским лицом в космосе. Именем Валентины Терешковой назван кратер на обратной стороне Луны, малая планета и звезда. Она лауреат международной премии "Легенда века" и носит титул величайшей женщины столетия, который присвоила ей британская ассоциация "Женщины года".

(слайд 50) Ученик.

· Вторая женщина отправилась в космический полет только через 19 лет. В августе 1982 года второй женщиной-космонавтом Земли стала Светлана Савицкая.-летчик-испытатель, неоднократная чемпионка и рекордсменка мира по самолетному спорту. В 1984-м Савицкая первой из женщин вышла в открытый космос, проработав за пределами станции "Салют-7" 3 часа 35 минут. До того как стать космонавткой, Светлана установила три мировых рекорда по парашютному спорту в групповых прыжках из стратосферы и 18 авиационных рекордов на реактивных самолетах.

(слайд 51-75) в автоматическом режиме на фоне песни «Притяжение земли»

Ученик. (слайд 51)-10 сек

· В 1997, Космонавт Кондакова стал первой российской женщиной, которая летит на борту американского шаттла. Ей принадлежит первый рекорд на самый долгий полет -- 169 дней на орбитальной станции "Мир" в 1994-1995 годах.

(слайд 52) Ученик.-10 сек

  • 18 марта 1965 - совершён первый в истории выход человека в открытый космос . Космонавт Алексей Леонов совершил выход в открытый космос из корабля Восход-2 . (СССР).

(слайд 53) Ученик.-9 сек

  • 3 февраля 1966 - АМС Луна-9 совершила первую в мире мягкую посадку на поверхность Луны, были переданы панорамные снимки Луны. (СССР).

(слайд 54) Ученик.- 9 сек

  • 1 марта 1966 - станция «Венера-3 » впервые достигла поверхности Венеры , доставив вымпел СССР. Это был первый в мире перелёт космического аппарата с Земли на другую планету. (СССР).

(слайд 55) Ученик. 9 сек

  • 3 апреля 1966 - станция «Луна-10 » стала первым искусственным спутником Луны. (СССР).

(слайд 56-57) Ученик. 9+10

  • 21 июля 1969 - первая высадка человека на Луну (Н. Армстронг ) в рамках лунной экспедиции корабля Аполлон-11 , доставившей на Землю, в том числе и пробы лунного грунта. (США).

В козырьке его шлема отражается Нейл Армстронг, который его фотографирует, и лунный посадочный модуль.

(слайд 58) Ученик. 9 сек

  • 24 сентября 1970 - станция «Луна-16 » произвела забор и последующую доставку на Землю (станцией «Луна-16 ») образцов лунного грунта. (СССР). Она же - первый беспилотный космический аппарат, доставивший на Землю пробы породы с другого космического тела (то есть, в данном случае, с Луны).

(слайд 59) Ученик. 9 сек

  • 17 ноября 1970 - мягкая посадка и начало работы первого в мире полуавтоматического дистанционно управляемого с Земли самоходного аппарата: Луноход-1 . (СССР).

(слайд 60) Ученик . 9 сек

  • 15 декабря 1970 - первая в мире мягкая посадка на поверхность Венеры: «Венера-7 ». (СССР).

(слайд 61) Ученик 9 сек

  • 19 апреля 1971 - запущена первая орбитальная станция Салют-1 . (СССР).
  • 13 ноября 1971 - станция «Маринер-9 » стала первым искусственным спутником Марса. (США).

(слайд 62) Ученик 9 сек

  • 27 ноября 1971 Марс-2 » впервые достигла поверхности Марса. (СССР).
  • 2 декабря 1971 Марс-3 ». (СССР).

(слайд 63) Ученик 9 сек

  • 3 марта 1972 аппарата , покинувшего впоследствии пределы Солнечной системы : Пионер-10 . (США).

(слайд 64) Ученик 8 сек

  • 20 октября 1975 Венера-9 » стала первым искусственным спутником Венеры. (СССР).

(слайд 65) Ученик 7 сек

  • октябрь 1975 Венера-9 » и « Венера-10 » и первые в мире фотоснимки поверхности Венеры. (СССР).

(слайд 66) Ученик 7 сек

  • 12 апреля 1981 многоразового транспортного космического корабля («Колумбия» . (США).

(слайд 67) Ученик 7 сек

  • 20 февраля 1986 Мир

(слайд 68) Ученик 7 сек

  • 20 ноября 1998 Международной космической станции . Производство и запуск (Россия). Владелец (США).

(слайд 69 - 8 сек) Наибольшее расстояние от Земли преодолел экипаж «Аполлона-13»: - 401056 км.

(слайд 70-10 сек) Первый частный космонавт: Майк Мелвилл, совершил полёт на «Space Ship One 21 июня 2004 года.

(слайд 71- 9 сек) Первый космический турист: Деннис Тито отправился в космос 28 апреля 2001 года..

(слайд 72- 9 сек) В самом пожилом возрасте в космосе побывал Джон Гленн, ему было 77 лет, когда он участвовал в полёте «Дискавери STS-95».

(слайд 73 – 8 сек) Самым молодым побывал в космосе Герман Титов, он совершил свой полёт в 25 лет на корабле «Восток-2».

(слайд 74 – 9 сек) Больше всего полётов (7 на 2003 год) совершили Джерри Росс и Франклин Чанг-Диаз.

(слайд 75 – 9сек) Больше всего в космосе в рамках одного полёта работал космонавт Валерий Поляков, - 438 суток.

(слайд 76) (по щелчку) Ученик.

Когда последний закруглен виток.
Так хорошо сойти на Землю снова.
И окунуться после всех тревог
В живую красоту всего земного.
Галактика в свеченье звездных трасс,
Нам на нее глядеть, не наглядеться,
Но, поднимаясь в небо, всякий раз
Своей Земле мы оставляем сердце.

Учитель. К большому сожалению, освоение космоса не обошлось без жертв. (слайд 77-90) Несколько грустных фактов о космонавтике

В автономном режиме на фоне музыки Альбинони

(слайд 78-79 ) Ученик.

В 1967 году Гас Гриссом со своими двумя коллегами Эдом Уайтом и Роджером Чаффи сгорели заживо в кабине Apollo 1, когда во время испытаний на стартовой площадке на мысе Канаверал вспыхнул пожар. Огонь мгновенно охватил кабину, так как внутри нее был почти чистый кислород.

(слайд 80-81 ) Ученик.

В 1967 году Владимир Комаров стал первым космонавтом, который погиб при выполнении космической миссии. Парашюты его космического корабля «Союз-1» не раскрылись во время приземлен. Сам пуск прошел нормально, но практически сразу же после выхода на орбиту не раскрылась одна из панелей солнечной батареи. Вскоре на борт не прошла команда на ориентацию корабля по Солнцу, вышла из строя аппаратура коротковолновой связи и др.

Продолжать полет стало бессмысленным, и 24 апреля, на 18-м витке вокруг Земли, командование приняло решение об аварийной посадке. Космонавт погиб на последнем этапе приземления: основной парашют спускаемого аппарата не раскрылся, и корабль на большой скорости врезался в землю...

(слайд 82) Ученик. Трагический полет Комарова был частью так называемой лунной гонки между СССР и США. Старту «Союз-1» предшествовали множество тревожных ситуаций и откровенные неудачи. Во время подготовки аппарата инженеры зафиксировали около 200 конструкционных дефектов, однако правительство все же настояло на соблюдении заданных сроков - чтобы сохранить превосходство в соперничестве с США, сулящее приоритет в высадке на естественный спутник Земли.

(слайд 83) Ученик. Юрий Гагарин – первый человек, побывавший в космосе, погиб в результате крушения МИГ-15, на котором он выполнял тренировочное задание. Его никто не предупредил о низкой облачности.

(слайд 84-85) Ученик Порядка 200 человек погибло в результате взрыва ракеты R-16 на космодроме «Байконур». Ракета взорвалась в октябре 1960 года, однако все детали происшествия были строжайшим секретом, который был раскрыт лишь после распада Советского Союза.

(слайд 86) Ученик Три члена экипажа космического корабля «Союз-11» задохнулись из-за неисправности воздушного клапана. Это случилось 30 июня 1971 года. Они стали единственными людьми, погибшими в открытом космосе. С момента гибели экипажа «Союз-11» у программы «Союз» больше не было несчастных случаев с фатальным исходом. НАСА потеряла 2 из 4 своих шаттлов и 14 космонавтов.

(слайд 87) Ученик Экипаж был обнаружен без признаков жизни. В кабине «Союза-11» были выключены все передатчики. Плечевые ремни у всех были отстёгнуты. Один из двух вентиляционных клапанов находился в открытом положении.

(слайд 88) Расследование показало, что с момента разделения отсеков давление в СА стало резко снижаться, поэтому несанкционированно открылся вентиляционный клапан. В результате наступила разгерметизация, что привело к гибели космонавтов.

(слайд 89) Положение тел членов экипажа свидетельствовало о том, что они пытались ликвидировать утечку, однако в тумане закрыли не тот клапан, и потеряли на этом время. Когда была обнаружена истинная причина разгерметизации, времени на её устранение, к сожалению уже не осталось.

(слайд 90) Ученик Американский космонавт Гас Гриссом чуть не утонул, когда в 1961 году его космический корабль Liberty Bell 7 приземлился в Тихом океане.

(слайд 91) Ученик До крушения шаттла Challenger специалисты НАСА говорили, что вероятность того, что подобное может случиться, ничтожно мала и составляет 1 случай из 100 тысяч. После крушения физик Ричард Фейнман провел исследование и установил, что в каждом сотом случае подобные испытания обречены на провал.

(слайд 92) Все семь членов экипажа шаттла Columbia погибли в результате крушения, однако после катастрофы выжили сотни круглых червей, на которых предполагалось ставить опыты в невесомости. На борту находилась Калпана Чавла – первая женщина-космонавт индийского происхождения.

(слайд 93 ) Учитель.

С начала эры космических полётов в космосе и при подготовке к космическим полётам на Земле погибли 22 космонавта. Из 40000 профессий, существующих на Земле, профессия космонавта самая трудная, опасная и ответственная. Это настоящий подвиг. Подвиг научный, технический, организационный, но прежде всего - чисто человеческий. Завоевание космоса только начинается...

(слайд 94 ) Ученик .

После старта Юрия Гагарина прошло много лет. За это время многое изменилось в космонавтике: и техника, и подготовка экипажей, и программа работы на орбите.
Работают в космосе теперь подолгу. Корабли уходят в небо один за другим. Орбитальные станции кружат вокруг планеты. Первыми космонавтами были летчики. Потом работу в космосе продолжили конструкторы, врачи. Сейчас космос зовет тех, кто умеет управлять электронно-вычислительными машинами, плавить металл, проводить монтажные и разгрузочные работы.

(слайд 95 ) Ученик.

Сегодня работа в космосе – это научные исследования и повседневная работа во имя прогресса во всем мире. Сегодняшний день характеризуется новыми проектами и планами освоения космического пространства . Активно развивается космический туризм . Пилотируемая космонавтика вновь собирается вернуться на Луну и обратила свой взор к другим планетам Солнечной системы (в первую очередь к Марсу ).

В заключение справедливо будет сказать, что двадцатое столетие по праву называют «веком электричества», «атомным веком», «веком химии», «веком биологии». Но самое последнее и, по-видимому, также справедливое его название - «космический век». Человечество вступило на путь, ведущий в загадочные космические дали, покоряя которые оно расширит сферу своей деятельности. Космическое будущее человечества - залог его непрерывного развития на пути прогресса и процветания, о котором мечтали и которое создают те, кто работал и работает сегодня в области космонавтики и других отраслях народного хозяйства.

(слайд 97 )

Учитель.

«Мы – дети Земли» – эти слова произнес Ю. А. Гагарин после того, как за 108 минут он облетел всю нашу планету. Она показалась ему прекрасной и... маленькой. Попав в безбрежный океан космоса, и наблюдая в иллюминаторах «алмазные россыпи ярких холодных звезд», Юрий Алексеевич Гагарин первым увидел со стороны нашу Землю.

(слайд 98 )

Мы – дети Земли... Мы только стоим на пороге новой космической эры. Несмотря на то, что после первого полета человека к звездам на околоземных орбитах побывали уже сотни людей из разных государств, мы делаем в космосе лишь первые шаги.

(слайд 99 )

В развитии нашей цивилизации наступило время, которое предсказывал на пороге XX века К. Э. Циолковский: «Человечество не останется вечно на Земле, но в погоне за светом и пространством, сначала робко проникнет за пределы атмосферы, а затем завоюет себе все околосолнечное пространство». Отныне и навсегда мы тесно связали свою жизнь и свое будущее с космосом, стали на путь, ведущий к овладению неисчерпаемыми ресурсами Вселенной.

(слайд 100 ) заставка окончания презентации

27 августа 1957 г. в Советском Союзе было успешно проведено первое в мире испытание межконтинентальной баллистической ракеты. В том же году 4 октября успешно запущен первый в мире искусственный спутник Земли, закрепивший лидерство Советского… … Геоэкономический словарь-справочник

освоение - см. освоить; я; ср. Освое/ние целинных и залежных земель. Освое/ние новой техники. Освое/ние космоса … Словарь многих выражений

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия

- (433) Эрос каменный астероид, пересекающий орбиту Марса Промышленное освоение астероидов предполагает добычу сырья на астероидах и космических телах в поясе астероидов и особенно в околоземном пространстве. Ра … Википедия

Les Robinsons du Cosmos Жанр: Научная фантастика

Les Robinsons du Cosmos Жанр: Фантастика Автор: Франсис Карсак Язык оригинала: французский Публикация: 1955 Робинзоны космоса научно фантастический роман французского писателя Франсиса Карсака, написанный в 1955 … Википедия

Нанотехнология - (Nanotechnology) Содержание Содержание 1. Определения и терминология 2. : история возникновения и развития 3. Фундаментальные положения Сканирующая зондовая микроскопия Наноматериалы Наночастицы Самоорганизация наночастиц Проблема образования… … Энциклопедия инвестора

Копия ракеты Р 7 в Москве на ВДНХ Космонавтика (от греч. κόσμος Вселенная и ναυτική искусство мореплавания, кораблевождение) процесс исследования космического пространства при помощи автоматических и пилотируемых космических аппаратов. Термин… … Википедия

Проект орбитального поселения, написанный фон Брауном для армии США в 1946 году. Космические поселения тороидальной формы (в простореч … Википедия

Колонизация космоса гипотетическое создание автономных человеческих поселений вне Земли. Проект орбитальной колонии «Стэнфордский тор» тор диаметром 1,6 км при диаметре поперечного сечения порядка 150 м Колонизация космоса является одной из… … Википедия

Книги

  • Освоение космоса , Лиз Барнеу. Космос всегда завораживал и заставлял мечтать. Но лишь в середине XX века первые космонавты, наконец, полетели в космос. Атлас "Освоение космоса" увлекает нас в невероятное приключение…
  • , <не указано>. Издание включает в себя разделы: - Десять важнейших терминов - Атмосфера Земли - Важнейшие даты освоения космоса - Добраться до Луны - Первый человек в космосе - Первый человек на…

12 апреля в нашей стране отмечается «День космонавтики». В этот день в 1961 году советский космонавт Юрий Алексеевич Гагарин совершил первый полет в космос. И первый полет не только в нашей стране, но и на всей нашей планете.

Давайте поговорим о том, как же готовился и происходил этот полет и сколько усилий приложили ученые и конструкторы всего мира, для освоения космоса.

Как все начиналось

Еще в конце IXX века Русский ученый Константин Эдуардович Циолковский мечтал об освоении космического пространства. Он составлял астрономические чертежи и сконструировал прибор для исследования действия силы тяжести на живой организм.

В начале XX века (в 1903 году) К.Э. Циолковский опубликовал работу “Исследование мировых пространств реактивными приборами”. В этой научной работе Циолковский не только рассказал о возможности проникновения человека в космос, но и дал подробное описание средства доставки – ракеты: законы движения, принцип конструкции и управления. Так было положено начало теоретического ракетостроения.

Основателем практического ракетостроения является – советский ученый, конструктор и организатор производства ракетно-космической техники.

Будучи молодым авиаконструктором, С. П. Королев познакомился с Циолковским и его трудами. После этого Королев увлекся ракетостроением. Он стал главным конструктором Конструкторского Бюро создавшего первые межконтинентальные ракеты.

В 1955 году под руководством С.П. Королева началась разработка совершенных трёхступенчатых и четырёхступенчатых носителей для реализации пилотируемых полетов и запусков автоматических космических станций.

4 октября 1957 года с космодрома Байконур был запущен первый искусственный спутник земли. Он имел форму шара, на нем было установлено два передатчика непрерывно излучавших радиосигналы. Таким образом, радиолюбители всего мира могли услышать сигналы спутника.

С запуском первого космического спутника была открыта космическая эра в истории человечества.

После запуска первого спутника стали разрабатываться, и были запущены спутники научного, народнохозяйственного и оборонного назначения. Под руководством С.П. Королева разрабатываются космические аппараты для полета к Луне.

В 1960 году в космос был отправлен космический корабль с живыми существами на борту. Это были собаки Белка и Стрелка. Полет прошел успешно, собаки вернулись на Землю живыми и здоровыми.

Первый космонавт

В 1961 году С.П. Королев создает первый пилотируемый космический корабль «Восток – 1». На этом корабле первый в мире космонавт Юрий Алексеевич Гагарин совершает полет вокруг земли.

Королев относится к здоровью первого космонавта осторожно, и первый пилотируемый корабль делает всего один виток вокруг земного шара, ведь никто не знал тогда, как повлияет на человека продолжительная невесомость и открытое космическое пространство.

12 апреля 1961 года космический корабль «Восток – 1» успешно стартовал с космодрома Байконур, облетел вокруг Земли и успешно приземлился. С тех пор, вот уже 55 лет в этот день мы отмечаем день космонавтики.

С тех пор было запущено много космических кораблей с людьми на борту, не только в нашей стране, но и в других странах мира, но на все времена наша страна останется первой космической державой.

Дальний космос

Со времени полета первого космонавта освоение космоса стало развиваться семимильными шагами, не только в нашей стране, но и в других странах мира. Человек вышел в открытый космос, долетел до луны и высадился на нее, космические станции изучили Марс, Венеру, Юпитер, Сатурн и их спутники.

Автоматические космические станции Вояджер-1 и Вояджер-2 , запущенные комическим агентством НАСА в 1977 году, совершили самый большой полет, пролетев мимо большинства планет нашей солнечной системы. Пролетев мимо пояса астероидов, они сфотографировали Юпитер и его спутники и отправились к Сатурну.

Подлетев к Сатурну, Вояджер-1 отклонился от плоскости эклиптики (плоскость, в пределах которой расположены все планеты Солнечной системы) и полетел в открытое космическое пространство. Вояджер-2 сфотографировал Сатурн и его спутники и тяготением планеты гиганта был отклонен на траекторию к планетам Уран и Нептун. Пролетев и сфотографировав Нептун и его спутники «Вояджер – 2» отправился за пределы Солнечной системы в сторону далекой звезды Росс 248.

Сейчас на Вояджерах отключено большинство приборов, но и по сей день, они передают научные данные на Землю.

расскажут много удивительного о нашей вселенной. Поднимая глаза на звездное небо завораживает дух. Космос полон загадок и неизвестности. Относительно ученым удалось разгадать некоторые тайны вселенной, однако это всего лишь маленький процент всего того, что происходит в космосе.

  1. Каждый год в нашей галактике «Млечный путь», появляется 40 новых звезд . Всего в нашей галактике 200 миллиардов звезд. А в соседней «Андромеда», в 5 раз больше.
  2. Наше Солнце больше Земли приблизительно в 100 раз, также в размерах оно превышает Юпитер и Сатурн . Но если сравнить Солнце с другими звездами во вселенной, оно будет настолько мало. Например, звезда «Большой пес» больше Солнца в 1500 раз.

  3. В пространстве космоса мы двигаемся где-то 530 километров за одну секунду . В галактике наша скорость составляет 230 километров за одну секунду. А наша галактика двигается со скоростью 300 километров в секунду.

  4. Ближайшая звезда к Земле – Проксима Центавра . Если двигаться со скоростью 96 километров в час, чтобы до нее добраться понадобится 50 миллионов лет.

  5. В Солнечной системе есть тело подобно на нашу планету – Титан . Это спутник Сатурна. Подобен он на Землю, тем что на его поверхности есть вулканы, реки, атмосфера, моря. По весу Титан приблизительно такой же, как и Земля. Но разумная жизнь на Титане не возможна. Все водные источники содержат метан и пропан. Однако есть предположение, что примитивная жизнь там возможна. Так как глубоко под поверхностью Титана есть океан, в котором есть вода.

  6. Еще в конце прошлого столетия ученые обнаружили на поверхностях гор Венеры покрытие . Оно обладает отражающей способностью в радиодиапазоне. Ученые пришли к выводу, что это металлический снег из сульфидов и свинца.

  7. Смотря на звезды, мы видим не какие они сейчас, а какие были более 14 миллиардов лет назад . Свет от далеких звезд долетает до нашего поля зрения в течении многих миллиардов лет, хотя двигается со скоростью 300 тысяч километров в секунду.
  8. С поверхности Солнца в разные стороны летают потоки частиц – солнечный ветер . Из-за этого Солнце теряет приблизительно 1 миллиард килограмм за одну секунду. Одна маленькая частица в 2-3 миллиметра солнечного ветра способна убить человека.

  9. Если два кусочка метала в открытом космосе приставить друг к другу они между собой приварятся . Это происходит потому что, в космосе метал окисляется.

  10. Все планеты вращаются вокруг солнца по своей оси . Солнце вращается вокруг Млечного Пути. Проходит Солнце полный оборот вокруг него за 225 миллионов лет со скоростью 800 тысяч километров за час.

  11. Это созвездие известно даже детям . Однако правильней называть Большую Медведицу не созвездием, а астеризмом. Это скопление звезд находящиеся далеко одна от другой в соседних галактиках. Большая Медведица – это часть еще одного созвездия под названием «Великая Медведица».
  12. Это яркие и неизведанные части в космосе . Сила гравитации в ней настолько огромна, что из нее не вырывается даже свет. Во время вращения черные дыры поглощают газовые облака, они светятся и тем самым показывают место черной дыры.

  13. Осваивать космос люди начали еще в древние времена . Но только с появлением телескопа астрономия начала стремительно развиваться, 400 лет назад. С каждым годом для людей космос становится все более открытым.

  14. У Земли по мимо Луны есть еще 4 спутника . Еще в позапрошлом столетии ученые увидели астероид, его диаметр составлял 5 километров. Он постоянно двигался возле нашей планеты. Это второй спутник Земли. Позже с помощью мощных телескопов ученые увидели еще три подобных астероида. А наш спутник – Луна, отдаляется от Земли в год, на 4 сантиметра. Это связано с тем, что вращение Земли уменьшается, на две миллисекунды в день.

  15. На данный момент открыто примерно 700 типов разных планет . Один из этих типов – алмазный. Углерод способен превращаться в алмаз, так и вышло с этой планетой. Она была полна углерода, потом затвердела и превратилась в алмазную планету.