По словам ученых, «выведенный» ими материал отличается чрезвычайно высокой прочностью и упругостью. Он способен быстро возвращать форму после сжатия, впитывать и удерживать большой объем не растворяющихся в воде веществ - до 900 раз больше собственного ве

Созданный в прошлом году материал под названием аэрографит не смог удержать титул самого легкого материала в мире. Корону пришлось отдать новому аэрогелю, изготовленному из графена, чудо-материала 21 века. Плотность ультралегкого материала ниже плотности гелия и вдвое меньше водорода.

Новый материал разработала группа исследователей под руководством профессора Гао Чао из лаборатории департамента технологий и наук полимеров Чжэцзянского университета (Китай).

Аэрогелям, изначально созданным в 1931 году американским ученым и инженером-химиком Сэмюелем Стивенсом Кистлером, в последнее время начало уделяться очень много внимания. В 2011 году аэрогель на основе многослойных углеродных нанотрубок (MCNT), известный также под названием «замороженный дым», с плотностью 4 мг/см3 уступил место самому легкому материалу в мире с микро-решетчатой структурой, плотность которого равна 0,9 мг/см3. Позже его сместил аэрографит (0,18 мг/см3), чей триумф оказался таким же недолгим. Сегодня пальма первенства принадлежит графеновому аэрогелю. Его плотность - 0,16 мг/см3.

Исследователи уже имеют опыт создания макроскопических графеновых материалов, в частности одномерных волокон и двухмерных пленок, полученных из графена. Чтобы поставить рекорд, им достаточно было добавить одно измерение и получить трехмерный пористый материал.

Вместо золь-гелевой технологии и других методов, используемых для создания аэрогелей, Гао применил новый способ высушивания, который помог создать углеродную губку настраиваемой формы.

«Необходимость использования шаблонов отсутствует, поскольку размер материала напрямую зависит от размера контейнера. Чем больше контейнер, тем больше аэрогеля. Мы можем говорить о тысячах кубических сантиметров, и это еще не предел».

По словам ученых, «выведенный» ими материал отличается чрезвычайно высокой прочностью и упругостью. Он способен быстро возвращать форму после сжатия, впитывать и удерживать большой объем не растворяющихся в воде веществ - до 900 раз больше собственного веса. В это сложно поверить, но за одну секунду грамм аэрогеля впитывает до 68,8 грамма органических веществ, что делает его привлекательным для использования в местах разлива нефти.

«Возможно, однажды он поможет предотвратить экологическую катастрофу. Благодаря эластичным свойствам материала собранная нефть и аэрогель могут быть вторично переработаны», - говорит Гао.

Исследователи изучают возможности применения нового материала. По их словам, графеновый аэрогель можно использовать в качестве изоляционного материала, подложки катализатора или высокоэффективного композита.

Аэрографит вытеснен с позиции самого лёгкого твёрдого вещества новой формой аэрогеля.

Исследование аэрогелей продолжается и учёные постоянно создают всё более невесомые его разновидности. В 1931 году был синтезирован аэрогель на основе карбоновых нанотруб. Плотность этого вещества составляет 4 миллиграмма на кубический сантиметр. Более 80 лет он считался самым лёгким из твёрдых веществ. На смену ему пришёл силикатный аэроглель (о котором уже как-то было ). Вещество, 1 кубический сантиметр которого весит 1 мг, заняло сразу 15 позиций в книге рекордов Гиннесса, а за свой голографический врешний вид получило название "замороженный дым". Позже в этой гонке его опередили металлические микрорешетки с плотностью 0,9 мг/см 3 , но и они вскоре были вытеснены с пьедестала аэрографитом (0,18 мг/см 3).



Металлические микрорешетки и аэрографит

Аэрографит удерживал титул самого легкого материала в последние годы. Он легче воздуха в шесть раз, один кубический сантиметр этого вещества весит 0,18 миллиграмма. Когда аэрографит был официально задокументирован и признан – это действительно было великое открытие. Но, триумф оказался недолог.

В этом месяце группа ученых из китайского университета Чжецзян смогла побить рекорд легкости, установленый аэрографитом. Новое открытие – это пористая субстанция, состоящая из графена и углеродных нанотруб, получаемая в результате сублимационной сушки их раствора. Материал получил название «графен-аэрогель». Его плотность - 0,16 мг/см 3 . Это в два раза больше плотности водорода и в семь с половиной раз меньше плотности воздуха.

Если кого-то беспокоит, почему все эти славные вещества при таком весе не улетают, можете успокоить себя тем же, чем и я. Мне это тоже показалось странным или, во всяком случае, контринтуитивным, но так говорил каждый ресурс, писавший об этих аэрогелях. К тому же, в Вики тоже такие показатели. Плотность воздуха - 1,2 мг/см 3 , плотность героя сюжета - 0,16. Устав перепроверять, я успокоила себя тем, что аэрогели пористые и при подсчёте плотности явно исключили вес воздуха внутри них. Так, вес кубического сантиметра металлической микрорешетки без воздуха - 0,9. С воздухом - 2,2 мг. Кажется, сошлось. Фух.

По словам одного из ведущих исследователей, метод сублимационной сушки также делает возможным массовое, а не лабораторное производство аэрографена.

Ужасненькое видео о нём:

Теперь, когда весь мир узнал о создании нового самого легкого материала, предлагаются множество идей его использования. Одна из самых популярных идей – это очистка разливов нефти. Графен-аэрогель сможет поглощать в себя нефть и воду в количестве, превышающий свой вес в 900 раз. А также поглощенные нефть и вода, и сам графен-аэрогель, могут быть использованы заново в дальнейшем. Исследователи трудятся усердно над дальнейшей разработкой материала и возможностями его применения.

Источники:


Начиная с 2011-го года, учёными было разработано несколько инновационных материалов, которым по очереди принадлежало звание «самый лёгкий материал на планете». Сначала аэрогель на основе углеродных нанотрубок (4 мг/см3), затем материал с микро-решётчатой структурой (0,9 мг/см3), потом аэрографит (0,18 мг/см3). Но сегодня пальма первенства самого лёгкого материала принадлежит графеновому аэрогелю, плотность которого составляет 0,16 мг/см3.

Это открытие, принадлежащее группе учёных из Чжэцзянского университета (Китай) под руководством профессора Гао Чао, вызвало настоящий фурор в современной науке. Графен сам по себе является необычайно лёгким материалом, который широко применяется в современных нанотехнологиях. Сначала учёные при помощи него создали графеновые волокна одномерного типа, потом двухмерные графеновые ленты, и вот сейчас к графену было добавлено третье измерения, в результате чего и был получен пористый материал, ставший самым лёгким материалом в мире.


Метод получения пористого материала из графена называется сублимационной сушкой. Таким же образом получают и другие аэрогели. Пористая углеродисто-графеновая губка способна почти полностью повторять любые заданные ей формы. Другими словами, количество изготавливаемого графенового аэрогеля зависит исключительно от объёма контейнера.


Учёные смело заявляют и о таких его качествах, как высокая прочность, упругость. При этом гарфеновый аэрогель способен впитывать и удерживать в себе объёмы органических веществ до 900 раз больше собственной массы! Так, за секунду 1 грамм аэрогеля способен впитать 68.8 грамм любого не растворяющегося в воде вещества.


Это свойство инновационного материала сразу заинтересовало экологов. Ведь таким образом можно быстро ликвидировать последствия техногенных аварий, например, использовать аэрогель в местах разлива нефти.


Кроме пользы для экологии, графеновый аэрогель несёт огромный потенциал и для энергетики, в частности, его планируют использовать в системах аккумулирования. В этом случае аэрогель может быть катализатором для определённых химических реакций. Также графеновый аэрогель уже сейчас начинает применяться в сложных композитных материалах.

Самый легкий материал в мире January 8th, 2014

Если вы следите за новинками в мире современных технологий, то данный материал не будет для вас большой новостью. Тем не менее, рассмотреть более детально самый легкий материал в мире и узнать еще немного подробностей полезно.

Менее года назад звание самого легкого в мире материала получил материал под названием аэрографит. Но этому материалу не получилось долго удерживать пальму первенства, ее не так давно перехватил другой углеродный материал под названием графеновый аэрогель. Созданный исследовательской группой лаборатории Отдела науки о полимерах и технологиях университета Чжэцзяна (Zhejiang University), которую возглавляет профессор Гэо Чэо (Gao Chao), сверхлегкий графеновый аэрогель имеет плотность немного ниже плотности газообразного гелия и чуть выше плотности газообразного водорода.

Аэрогели, как класс материалов, были разработаны и получены в 1931 году инженером и ученым-химиком Сэмюэлем Стивенсом Кистлером (Samuel Stephens Kistler). С того момент ученые из различных организаций вели исследования и разработку подобных материалов, невзирая на их сомнительную ценность для практического использования. Аэрогель, состоящий из многослойных углеродных нанотрубок, получивший название «замороженный дым» и имевший плотность 4 мГ/см3, потерял звание самого легкого материала в 2011 году, которое перешло к материалу из металлической микрорешетки, имеющему плотность 0.9 мГ/см3 . А еще год спустя звание самого легкого материала перешло к углеродному материалу под названием аэрографит , плотность которого составляет 0.18 мг/см3.

Новый обладатель звания самого легкого материала, графеновый аэрогель, созданный командой профессора Чэо, имеет плотность 0.16 мГ/см3. Для того, чтобы создать столь легкий материала ученые использовали один из самых удивительных и тонких материалов на сегодняшний день — графен. Используя свой опыт в создании микроскопических материалов, таких, как «одномерные» графеновые волокна и двухмерные графеновые ленты, команда решила добавить к двум измерениями графена еще одно измерение и создать объемный пористый графеновый материал.

Вместо метода изготовления по шаблону, в котором используется материал-растворитель и с помощью которого обычно получают различные аэрогели, китайские ученые использовали метод сублимационной сушки. Сублимационная сушка коолоидного раствора, состоящего из жидкого наполнителя и частиц графена, позволила создать углеродистую пористую губку, форма которой почти полностью повторяла заданную форму.

«Отсутствие потребности использования шаблонов размеры и форма создаваемого нами углеродного сверхлегкого материала зависит только от формы и размеров контейнера» — рассказывает профессор Чэо, — «Количество изготавливаемого аэрогеля зависит только от величины контейнера, который может иметь объем, измеряемый тысячами кубических сантиметров».

Получившийся графеновый аэрогель является чрезвычайно прочным и упругим материалом. Он может поглотить органические материалы, в том числе и нефть, по весу превышающие в 900 раз его собственный вес с высокой скоростью поглощения. Один грамм аэрогеля поглощает 68.8 грамма нефти всего за одну секунду, что делает его привлекательным материалом для использования в качестве поглотителя разлитой в океане нефти и нефтепродуктов.

Помимо работы в качестве поглотителя нефти графеновый аэрогель имеет потенциал для использования в системах аккумулирования энергии, в качестве катализатора для некоторых химических реакциях и в качестве наполнителя для сложных композитных материалов.

Болотное растение под названием талия беловатая (Thalia dealbata ) вдохновило исследователей на создание нового вида аэрогеля . Напомним, что к этому классу относятся материалы, представляющие собой гель, в котором жидкая фаза полностью замещена газообразной. Такие материалы обладают рекордно низкой плотностью и демонстрируют ряд уникальных свойств: твёрдость, прозрачность, жаропрочность, чрезвычайно низкую теплопроводность.

Из-за уникальных свойств использование аэрогелей становится всё шире: от улучшения работы до .

Для гибкой электроники и носимых датчиков аэрогели также представляются незаменимыми. Однако до недавних пор главной проблемой для учёных было соединение в одном материале таких качеств, как прочность и эластичность.

Команде под руководством Хао Бай (Hao Bai) из Чжэцзянского университета (Китай) удалось найти решение , и помогло им в этом болотное растение. Талия беловатая привлекла внимание исследователей тем, что способна противостоять даже очень сильным ветрам: её стебли невероятно гибкие и в то же время прочные.

Именно это и нужно было специалистам для создания нового материала, поэтому они попытались в лабораторных условиях воспроизвести структуру стебля растения. "Прочность и упругость обычно являются взаимоисключающими в обычных аэрогелях. На такие материалы существует огромный спрос во многих областях, но совместить оба свойства в одном материале крайне сложно", — объясняет Бай.

Сложно, но возможно, если использовать технологию двунаправленной заморозки. Сперва исследователи подвергли диспергированию в воде частицы оксида графена. Когда жидкость замерзала, образовывались листы, а после полного замораживания всех листов они вместе образовали трёхмерную сеть, похожую по структуре на кристаллы льда. Затем последовало термическое восстановление и сублимация, в результате на выходе эксперты получили аэрогель, по структуре напоминающий пористые стебли талии беловатой.

Получившийся материал в 7,5 раз легче воздуха и примерно в 1000 раз плотнее воды. Кстати, именно новый графеновый аэрогель теперь претендует на звание самого лёгкого твёрдого материала на Земле, отметили разработчики в интервью порталу ScienceAlert .

Материал уже прошёл серию тестов, которые показали: он способен выдерживать вес, в шесть тысяч раз превышающий его собственный. После тысячи сжимающих циклов аэрогель неизменно возвращался в исходное состояние и сохранил при этом 85% от своей первоначальной прочности (которую имел до применения компрессии). Для сравнения: большинство аэрогелей со стандартной структурой сохраняют 45% от их первоначальной прочности после десяти сжимающих циклов.

"Изучение природы всегда даёт идеи для разработки новых материалов и технологий. Аэрогель из графена отличается от современных аэрогелей как в микроструктурах, так и в свойствах", — заключает Бай.

Он и его коллеги уверены: уникальные свойства материала сделают его идеальным компонентом для гибкой электроники - сегодня это системы "умных" домов, панели солнечных батарей, изогнутые экраны телевизоров и гибкие телефоны, а также многое другое.

Кстати, ранее инженеры представили , которые помогут получить питьевую воду из морской.