Естествознание не только выделяет типы материальных объектов во Вселенной, но и раскрывает связи между ними. Связь между объектами в целостной системе более упорядочена, более устойчива, чем связь каждого из элементов с элементами из внешней среды. Чтобы разрушить систему, выделить из системы тот или иной элемент, нужно приложить к ней определенную энергию. Эта энергия имеет разную величину и зависит от типа взаимодействия между элементами системы. В мегамире эти взаимодействия обеспечиваются гравитацией, в макромире к гравитации добавляется электромагнитное взаимодействие, и оно становится основным, как более сильное. В микромире на размерах атома проявляется еще более сильное ядерное взаимодействие, обеспечивающее целостность атомных ядер. При переходе к элементарным частицам энергия внутренних связей становится сравнимой с собственной энергией частиц - слабое ядерное взаимодействие обеспечивает их целостность. Так что чем меньше размеры материальных систем, тем более прочно связаны между собой элементы.

История науки знает множество попыток представить сложные процессы во Вселенной в виде определенных схем. Успешное познание окружающего мира и приведение наблюдаемых явлений к простейшим понятиям возможны лишь в том случае, если бы мы сумели описать мир в терминах ограниченного числа фундаментальных частиц и нескольких типов фундаментальных взаимодействий, в которые они могут вступать. Сейчас мы знаем, что природные вещества - это химические соединения элементов, построенных из атомов и собранных в Периодическую


таблицу. Некоторое время считали, что атомы и есть элементарные кирпичики мироздания, но потом установили, что атом представляет собой «целую Вселенную» и состоит из взаимодействующих друг с другом еще более фундаментальных частиц: протонов, электронов, нейтронов, мезонов и т.д. Число частиц, претендующих на элементарность, увеличивается, но так ли уж они элементарны?

Механика Ньютона была признана, но происхождение сил, которые вызывают ускорения, в ней не обсуждались. Силы гравитации действуют через пустоту, они дальнодействующие, тогда как силы электромагнитные - через среду. В настоящее время все взаимодействия в природе сводят к четырем типам: гравитационные, электромагнитные, сильные ядерные и слабые ядерные.



Гравитация (от лат. gravitas - тяжесть) - исторически первое исследованное взаимодействие. Вслед за Аристотелем считали, что все тела стремятся в «своему месту» (тяжелые - вниз, к Земле, легкие - вверх). Физике XVII-XVIII вв. были известны только гравитационные взаимодействия. По Ньютону, две точечные массы притягивают друг друга с силой, направленной вдоль соединяющей их прямой: Знак минус указывает на то, что мы имеем дело с притяжением, r - расстояние между телами (считается, что размер тел намного меньше r), т 1 и т 2 - массы тел. Величина G - универсальная постоянная, определяющая значение гравитационных сил. Если тела массой по 1 кг находятся на расстоянии 1 м друг от друга, то сила притяжения между ними равна 6,67 10 -11 н. Гравитация универсальна, все тела подвержены ей и даже сама частица - источник гравитации. Если бы величина G была больше, то увеличилась бы и сила, но G очень мала, и гравитационное взаимодействие в мире субатомных частиц несущественно, а между макроскопическими телами еле заметно. Кэвендиш сумел измерить величину G, пользуясь крутильными весами. Универсальность постоянной G означает, что в любом месте Вселенной и в любой момент времени сила притяжения между телами массой по 1 кг, разделенными расстоянием 1 м, будет иметь то же значение. Поэтому можно говорить, что величина G определяет структуру гравитирующих систем. Гравитация, или тяготение, не очень существенна при взаимодействии между малыми частицами, но она удерживает планеты, всю Солнечную систему и галактики. Мы постоянно ощущаем гравитацию в нашей жизни. Закон утвердил дальнодействующую природу силы тяготения и основное свойство гравитационного взаимодействия - его универсальность.

Теория тяготения Эйнштейна (ОТО) дает отличающиеся результаты от закона Ньютона в сильных гравитационных полях, в слабых - обе теории совпадают. Согласно ОТО, гравитация - это проявление искривления пространства-времени. Тела движутся по искривленным траекториям не потому, что на них действует


гравитация, а потому, что они движутся в искривленном пространстве-времени. Движутся «кратчайшим путем, и тяготение - это геометрия». Влияние искривления пространства-времени можно обнаружить не только вблизи коллапсирующих объектов типа нейтронных звезд или черных дыр. Таковы, например, прецессия орбиты Меркурия или замедление времени на поверхности Земли (см. рис. 2.3, в). Эйнштейн показал, что гравитацию можно описывать как эквивалент ускоренного движения.

Чтобы избежать сжатия Вселенной под влиянием самогравитации и обеспечить ее стационарность, он ввел возможный источник гравитации с необычными свойствами, ведущий к «расталкиванию» материи, а не к концентрации ее, а сила отталкивания возрастает с увеличением расстояния. Но эти свойства могут проявляться только в очень больших масштабах Вселенной. Сила отталкивания неимоверно мала и не зависит от отталкивающей массы; ее представляют в виде где т - масса от-

талкиваемого объекта; r - его расстояние от отталкивающего тела; L - константа. В настоящее время устанавливают верхний предел для L = 10 -53 м -2 , т.е. для двух тел массой по 1 кг, находящихся на расстоянии 1 м, сила притяжения превышает космическое отталкивание, по крайней мере в 10 25 раз. Если две галактики с массами 10 41 кг находятся на расстоянии 10 млн св. лет (около 10 22 м), то для них силы притяжения примерно уравновешивались бы силами отталкивания, если величина L действительно близка к указанному верхнему пределу. Эта величина не измерена до сих пор, хотя и важна для крупномасштабной структуры Вселенной как фундаментальная.

Электромагнитное взаимодействие, обусловленное электрическими и магнитными зарядами, переносится фотонами. Силы взаимодействия между зарядами сложным образом зависят от положения и движения зарядов. Если два заряда q 1 и q 2 неподвижны и сосредоточены в точках на расстоянии r, то взаимодействие между ними электрическое и определяется законом Кулона: В зависимости от знаков зарядов q 1 и q 2 сила электрического взаимодействия, направленная вдоль прямой, соединяющей заряды, будет силой притяжения или отталкивания. Здесь через обозначена постоянная, определяющая интенсивность электростатического взаимодействия, ее значение равно 8,85 10 -12 Ф/м. Так, два заряда по 1 Кл, разнесенные на 1 м, будут испытывать силу 8,99 10 9 Н. Электрический заряд всегда связан с элементарными частицами. Численная величина заряда наиболее известных среди них - протона и электрона - одинакова: это универсальная постоянная е = 1,6 10 -19 Кл. Заряд протона считается положительным, электрона - отрицательным.

Магнитные силы порождаются электрическими токами - движением электрических зарядов. Существуют попытки объединить


теории с учетом симметрий, в которых предсказывается существование магнитных зарядов (магнитных монополей), но они пока не обнаружены. Поэтому величина е определяет и интенсивность магнитного взаимодействия. Если электрические заряды движутся с ускорением, то они излучают - отдают энергию в виде света, радиоволн или рентгеновских лучей в зависимости от диапазона частот. Почти все носители информации, воспринимаемые нашими органами чувств, имеют электромагнитную природу, хотя и проявляются подчас в сложных формах. Электромагнитные взаимодействия определяют структуру и поведение атомов, удерживают атомы от распада, отвечают за связи между молекулами, т. е. за химические и биологические явления.

Гравитация и электромагнетизм - дальнодействующие силы, распространяющиеся на всю Вселенную.

Сильные и слабые ядерные взаимодействия - короткодействующие и проявляются только в пределах размеров атомного ядра, т. е. в областях порядка 10 -14 м.

Слабое ядерное взаимодействие ответственно за многие процессы, обуславливающие некоторые виды ядерных распадов элементарных частиц (например, (3-распад - превращение нейтронов в протоны) с радиусом действия почти точечным: около 10 -18 м. Оно сильнее сказывается на превращениях частиц, чем на их движении, поэтому его эффективность определяют постоянной, связанной со скоростью распада, - универсальной постоянной связи g(W), определяющей скорость протекании процессов типа распада нейтрона. Слабое ядерное взаимодействие осуществляют так называемые слабые бозоны, и одни субатомные частицы могут превращаться в другие. Открытие нестабильных субъядерных частиц обнаружило, что слабое взаимодействие вызывает множество превращений. Сверхновые звезды - один из немногих случаев наблюдаемого слабого взаимодействия.

Сильное ядерное взаимодействие препятствует распаду атомных ядер, и не будь его, ядра распались бы из-за сил электрического отталкивания протонов. В ряде случаев для его характеристики вводят величину g(S), аналогичную электрическому заряду, но намного большую. Сильное взаимодействие, осуществляемое глюонами, резко спадает до нуля за пределами области радиусом около 10 -15 м. Оно связывает между собой кварки, входящие в состав протонов, нейтронов и других подобных частиц, именуемых адронами. Говорят, что взаимодействие протонов и нейтронов есть отражение их внутренних взаимодействий, но пока картина этих глубинных явлений скрыта от нас. С ним связаны энергия, выделяемая Солнцем и звездами, превращения в ядерных реакторах и освобождение энергии.

Перечисленные типы взаимодействий имеют, видимо, разную природу. К настоящему времени не ясно, исчерпываются ли ими


все взаимодействия в природе. Самое сильное - короткодействующее сильное взаимодействие, электромагнитное слабее его на 2 порядка, слабое - на 14 порядков, а гравитационное меньше сильного на 39 порядков. В соответствии с величиной сил взаимодействия они происходят за разное время. Сильные ядерные взаимодействия возникают при столкновении частиц с околосветовыми скоростями. Время реакций, определяемое делением радиуса действия сил на скорость света, дает величину порядка 10 -23 с. Процессы слабого взаимодействия происходят за 10 -9 с, а гравитационные - порядка 10 16 с, или 300 млн лет.

«Закон обратных квадратов», по которому действуют друг на друга точечные гравитационные массы или электрические заряды, следует, как показал П.Эренфест, из трехмерности пространства (1917). В пространстве п измерений точечные частицы взаимодействовали бы по закону обратной степени (n - 1). Для п = 3 справедлив закон обратных квадратов, так как 3 - 1 = 2. А при и = 4, что соответствует закону обратных кубов, планеты двигались бы по спиралям и быстро упали на Солнце. В атомах при числе измерений больше трех также не существовало бы устойчивых орбит, т. е. не было бы химических процессов и жизни. На связь трехмерности пространства с законом тяготения указывал еще и Кант.

Кроме того, можно показать, что распространение волн в чистом виде невозможно в пространстве с четным числом измерений - появляются искажения, нарушающие переносимую волной структуру (информацию). Пример тому - распространение волны по резиновому покрытию (по поверхности размерности п = 2). В 1955 г. математик Г. Дж. Уитроу заключил, что поскольку живым организмам необходимы передача и обработка информации, то высшие формы жизни не могут существовать в пространствах четной размерности. Этот вывод относится к известным нам формам жизни и законам природы и не исключает существования иных миров, иной природы.

В посвседневной жизни мы сталкиваемся с разнообразными силами, возникающими при столкновении тел, трении, взрыве, натяжении нити, сжатии пружины и т.д. Однако все перечисленные силы являются результатом электромагнитного взаимодействия атомов друг с другом. Теория электромагнитного взаимодействия была создана Максвеллом в 1863 г.

Другим давно известным взаимодействием является гравитационное взаимодействие между телами, обладающими массой. В 1915 г. Эйнштейн создал общую теорию относительности, связавшую гравитационное поле с искривлением пространства-времени.

В 1930-е гг. было обнаружено, что ядра атомов состоят из нуклонов, причем ни электромагнитные, ни гравитационные взаимодействия не могут объяснить, что удерживает нуклоны в ядре. Для описания взаимодействия нуклонов в ядре было предложено сильное взаимодействие.

При продолжении изучения микромира выяснилось, что некоторые явления не описываются тремя типами взаимодействия. Поэтому для описания распада нейтрона и других подобных процессов было предложено слабое взаимодействие.

Сегодня все известные в природе силы являются продуктом четырех фундаментальных взаимодействий , которые можно расположить по убыванию интенсивности в следующем порядке:

  • 1) сильное взаимодействие;
  • 2) электромагнитное взаимодействие;
  • 3) слабое взаимодействие;
  • 4) гравитационное взаимодействие.

Фундаментальные взаимодействия переносятся элементарными частицами - переносчиками фундаментальных взаимодействий. Эти частицы называют калибровочными бозонами. Процесс фундаментальных взаимодействий тел можно представить следующим образом. Каждое из тел испускает частицы - переносчики взаимодействий, которые поглощаются другим телом. При этом тела испытывают взаимное влияние.

Сильное взаимодействие может возникать между протонами, нейтронами и прочими адронами (см. ниже). Оно является короткодействующим и характеризуется радиусом действия сил порядка 10 15 м. Переносчиком сильного взаимодействия между адронами являются пионы , причем длительность протекания взаимодействия составляет порядка 10 23 с.

Электромагнитное взаимодействие имеет на четыре порядка меньшую интенсивность по сравнению с сильным взаимодействием. Оно возникает между заряженными частицами. Электромагнитное взаимодействие является длиннодействующим и характеризуется бесконечным радиусом действия сил. Переносчиком электромагнитного взаимодействия являются фотоны , причем длительность протекания взаимодействия составляет порядка 10“ 20 с.

Слабое взаимодействие имеет на 20 порядков меньшую интенсивность по сравнению с сильным взаимодействием. Оно может возникать между адронами и лептонами (см. ниже). В число лептонов входят, в частности, электрон и нейтрино. Примером слабого взаимодействия является рассмотренный выше p-распад нейтрона. Слабое взаимодействие является короткодействующим и характеризуется радиусом действия сил порядка 10 18 м. Переносчиком слабого взаимодействия являются векторные бозоны , причем длительность протекания взаимодействия составляет порядка 10 10 с.

Гравитационное взаимодействие имеет на 40 порядков меньшую интенсивность по сравнению с сильным взаимодействием. Оно возникает между всеми частицами. Гравитационное взаимодействие является длиннодействующим и характеризуется бесконечным радиусом действия сил. Переносчиком гравитационного взаимодействия, возможно, являются гравитоны. Эти частицы пока не найдены, что может быть связано с малой интенсивностью гравитационного взаимодействия. С ней связано и то, что из-за малости масс элементарных частиц данное взаимодействие в процессах ядер- ной физики несущественно.

В 1967 г. А. Саламом и С. Вайнбергом была предложена теория элект- рослабого взаимодействия , объединившая электромагнетное и слабое взаимодействия. В 1973 г. была создана теория сильного взаимодействия квантовая хромодинамика. Все это позволило создать стандартную модель элементарных частиц, описывающую электромагнитное, слабое и сильное взаимодействия. Все три рассматриваемые здесь типа взаимодействия возникают как следствие постулата, что наш мир симметричен относительно трех типов калибровочных преобразований.

2.2. Фундаментальные взаимодействия

Взаимодействие – основная причина движения материи, поэтому взаимодействие присуще всем материальным объектам независимо от их природного происхождения и системной организации. Особенности различных взаимодействий определяют условия существования и специфику свойств материальных объектов. Всего известно четыре вида взаимодействия: гравитационное, электромагнитное, сильное и слабое.

Гравитационное взаимодействие первым из известных фундаментальных взаимодействий стало предметом исследования ученых. Оно проявляется во взаимном притяжении любых материальных объектов, имеющих массу, передается посредством гравитационного поля и определяется законом всемирного тяготения, который был сформулирован И. Ньютоном

Закон всемирного тяготения описывает падение материальных тел в поле Земли, движение планет Солнечной системы, звезд и т. п. По мере увеличения массы вещества гравитационные взаимодействия возрастают. Гравитационное взаимодействие – наиболее слабое из всех известных современной науке взаимодействий. Тем не менее гравитационные взаимодействия определяют строение всей Вселенной: образование всех космических систем; существование планет, звезд и галактик. Важная роль гравитационного взаимодействия определяется его универсальностью: все тела, частицы и поля участвуют в нем.

Переносчиками гравитационного взаимодействия являются гравитоны – кванты гравитационного поля.

Электромагнитное взаимодействие также является универсальным и существует между любыми телами в микро-, макро– и мегамире. Электромагнитное взаимодействие обусловлено электрическими зарядами и передается с помощью электрического и магнитного полей. Электрическое поле возникает при наличии электрических зарядов, а магнитное – при движении электрических зарядов. Электромагнитное взаимодействие описывается: законом Кулона, законом Ампера и др. и в обобщенном виде – электромагнитной теорией Максвелла, связывающей электрическое и магнитное поля. Благодаря электромагнитному взаимодействию возникают атомы, молекулы и происходят химические реакции. Химические реакции представляют собой проявление электромагнитных взаимодействий и являются результатами перераспределения связей между атомами в молекулах, а также количества и состава атомов в молекулах разных веществ. Различные агрегатные состояния вещества, силы упругости, трения и т. д. определяются электромагнитным взаимодействием. Переносчиками электромагнитного взаимодействия являются фотоны – кванты электромагнитного поля с нулевой массой покоя.

Внутри атомного ядра проявляются сильные и слабые взаимодействия. Сильное взаимодействие обеспечивает связь нуклонов в ядре. Данное взаимодействие определяется ядерными силами, обладающими зарядовой независимостью, короткодействием, насыщением и другими свойствами. Сильное взаимодействие удерживает нуклоны (протоны и нейтроны) в ядре и кварки внутри нуклонов и отвечает за стабильность атомных ядер. С помощью сильного взаимодействия ученые объяснили, почему протоны ядра атома не разлетаются под действием электромагнитных сил отталкивания. Сильное взаимодействие передается глюонами – частицами, «склеивающими» кварки, которые входят в состав протонов, нейтронов и других частиц.

Слабое взаимодействие также действует только в микромире. В этом взаимодействии участвуют все элементарные частицы, кроме фотона. Оно обусловливает большинство распадов элементарных частиц, поэтому его открытие произошло вслед за открытием радиоактивности. Первая теория слабого взаимодействия была создана в 1934 г. Э. Ферми и развита в 1950-е гг. М. Гелл-Маном, Р. Фейнманом и другими учеными. Переносчиками слабого взаимодействия принято считать частицы с массой в 100 раз больше массы протонов – промежуточные векторные бозоны.

Характеристики фундаментальных взаимодействий представлены в табл. 2.1.

Таблица 2.1

Характеристики фундаментальных взаимодействий

Из таблицы видно, что гравитационное взаимодействие гораздо слабее других взаимодействий. Радиус его действия неограничен. Оно не играет существенной роли в микропроцессах и в то же время является основным для объектов с большими массами. Электромагнитное взаимодействие сильнее гравитационного, хотя радиус его действия также неограничен. Сильное и слабое взаимодействия имеют очень ограниченный радиус действия.

Одна из важнейших задач современного естествознания – создание единой теории фундаментальных взаимодействий, объединяющей различные виды взаимодействия. Создание подобной теории означало бы также построение единой теории элементарных частиц.

Чтобы понять, стоит ли продолжать писать короткие этюды, объясняющие буквально на пальцах разные физические явления и процессы. Результат развеял мои сомнения. Продолжу. Но чтобы подойти к довольно сложным явлениям придется делать отдельные последовательные серии постов. Так, чтобы дойти до рассказа об устройстве и эволюции Солнца и других типов звезд придется начать с описания типов взаимодействия между элементарными частичами. С этого и начнем. Без формул.
Всего в физике известно четыре типа взаимодействия. Хорошо знакомые все гравитационное и электромагнитное . И почти неизвестные широкой публике сильное и слабое . Опишем их последовательно.
Гравитационное взаимодействие . Человек знаком с ним издревле. Ибо постоянно находится в поле тяжести Земли. А из школьной физики мы знаем, что сила гравитационного взаимодействия между телами пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. Под воздействием гравитационной силы Луна вращается вокруг Земли, Земля и другие планеты - вокруг Солнца, а последнее вместе с другими звездами - вокруг центра нашей Галактики.
Довольно медленное убывание силы гравитационного взаимодействия с расстоянием (обратно пропорционально квадрату расстояния) заставляет физиков говорить об этом взаимодействии как о дальнодействующем . Кроме того, действующие между телами силы гравитационного взаимодействия являются только силами притяжения.
Электромагнитное взаимодействие . В самом простейшем случае электростатического взаимодействия, как мы знаем из школьной физики, сила притяжения или отталкивания между электрически заряженными частицами пропорциональна произведению их электрических зарядов и обратно пропорциональна квадрату расстояния между ними. Что очень похоже на закон гравитационного взаимодействия. Отличие лишь в том, что электрические заряды с одинаковыми знаками отталкиваются, а с разными - притягиваются. Поэтому электромагнитное взаимодействие, как и гравитационное, физики называют дальнодействующим .
В то же время электромагнитное взаимодействие сложнее гравитационного. Из школьной физики мы знаем, что электрическое поле создается электрическими зарядами, магнитных зарядов в природе не существует, а магнитное поле создается электрическими токами.
На самом деле электрическое поле может создаваться еще и изменяющимся во времени магнитным полем, а магнитное поле - изменяющимся во времени электрическим полем. Последнее обстоятельство дает возможность существовать электромагнитному полю вообще без электрических зарядов и токов. И эта возможность реализуется в виде электромагнитных волн. Например, радиоволн и квантов света.
Из-за одинаковой зависимости от расстояния электрических и гравитационных сил естественно попытаться сравнить их интенсивности. Так, для двух протонов силы гравитационного притяжения оказываются в 10 в 36-й степени раз (миллиард миллиардов миллиардов миллиардов раз) слабее сил электростатического отталкивания. Поэтому в физике микромира гравитационным взаимодействием вполне обоснованно можно пренебрегать.
Сильное взаимодействие . Это - близкодействующие силы. В том смысле, что они действуют на расстояниях только порядка одного фемтометра (одной триллионной части миллиметра), а на больших расстояниях их влияние практически не ощущаются. Более того, на расстояниях порядка одного фемтометра сильное взаимодействие примерно в сотню раз интенсивнее электромагнитного.
Именно поэтому одинаково электрически заряженные протоны в атомном ядре не отталкиваются друг от друга электростатическими силами, а удерживаются вместе сильным взаимодействием. Поскольку размеры протона и нейтрона составляют около одного фемтометра.
Слабое взаимодействие . Оно действительно очень слабое. Во-первых, оно действует на расстояниях в тысячу раз меньших одного фемтометра. А на больших расстояниях практически не ощущается. Поэтому оно, как и сильное, принадлежит к классу близкодействующих . Во-вторых, его интенсивность примерно в сотню миллиардов раз меньше интенсивности электромагнитного взаимодействия. Слабое взаимодействие отвечает за некоторые распады элементарных частиц. В том числе - свободных нейтронов.
Существует лишь один тип частиц, которые взаимодействуют с веществом только через слабое взаимодействие. Это - нейтрино. Через каждый квадратный сантиметр нашей кожи ежесекундно проходит почти сотня миллиардов солнечных нейтрино. И мы их совершенно не замечаем. В том смысле, что за время нашей жизни вряд ли несколько штук нейтрино провзаимодействует с веществом нашего тела.
Говорить же о теориях, описывающих все эти типы взаимодействий не будем. Ибо для нас важна качественная картина мира, а не изыски теоретиков.

Взаимодействие в физике - это воздействие тел или частиц друг на друга, приводящее к из­менению их движения.

Близкодействие и дальнодействие (или действие на расстоянии). О том, как осуществляется взаимодействие тел, в физике издавна существовали две точки зрения. Первая из них предпола­гала наличие некоторого агента (например, эфира), через который одно тело передает свое влия­ние на другое, причем с конечной скоростью. Это теория близкодействия. Вторая предполагала, что взаимодействие между телами осуществляется через пустое пространство, не принимающее никакого участия в передаче взаимодействия, причем передача происходит мгновенно. Это тео­рия дальнодействия. Она, казалось бы, окончательно победила после открытия Ньютоном зако­на всемирного тяготения. Так, например, считалось, что перемещение Земли должно сразу же приводить к изменению силы тяготения, действующей на Луну. Кроме самого Ньютона, позднее концепции дальнодействия придерживались Кулон и Ампер.

После открытия и исследования электромагнитного поля (см.Электромагнитное поле) тео­рия дальнодействия была отвергнута, так как было доказано, что взаимодействие электрически заряженных тел осуществляется не мгновенно, а с конечной скоростью (равной скорости света: с = 3 108 м/с) и перемещение одного из зарядов приводит к изменению сил, действующих на дру­гие заряды, не мгновенно, а спустя некоторое время. Возникла новая теория близкодействия, которая была затем распространена и на все другие виды взаимодействий. Согласно теории близ­кодействия взаимодействие осуществляется посредством соответствующих полей, окружающих тела и непрерывно распределенных в пространстве (т. е. поле является тем посредником, который передает действие одного тела на другое). Взаимодействие электрических зарядов - посредством электромагнитного поля, всемирное тяготение - посредством гравитационного поля.

На сегодняшний день физике известны четыре типа фундаментальных взаимодействий, существующих в природе (в порядке возрастания интенсивности): гравитационное, слабое, электромагнитное и сильное взаимодействия.

Фундаментальными называются взаимодействия, которые нельзя свести к другим типам вза­имодействий.

Взаимодействие

Взаимодействующие частицы

" Относительная

Радиус действия, м

интенсивность

Гравитационное

Все, кроме фотона

Электромагнитное

Заряженные частицы


Фундаментальные взаимодействия отличаются интенсивностью и радиусом действия (см. табл. 1.1). Под радиусом действия понимают максимальное расстояние между частица­ми, за пределами которого их взаимодействием можно пренебречь.

По радиусу действия фундаментальные взаимодействия делятся надальнодействуюгцие {гра­витационное и электромагнитное) икороткодействующие (слабое и сильное) (см. табл. 1.1).

Гравитационное взаимодействие универсально: в нем участвуют все тела в природе - от звезд, планет и галактик до микрочастиц: атомов, электронов, ядер. Его радиус действия равен бесконеч­ности. Однако как для элементарных частиц микромира, так и для окружающих нас предметов макромира силы гравитационного взаимодействия настолько малы, что ими можно пренебречь (см. табл. 1.1). Оно становится заметным с увеличением массы взаимодействующих тел и потому определяющим в поведении небесных тел и образовании и эволюции звезд.

Слабое взаимодействие присуще всем элементарным частицам, кроме фотона. Оно отвечает за большинство ядерных реакций распада и многие превращения элементарных частиц.

Электромагнитное взаимодействие определяет структуру вещества, связывая электроны и ядра в атомах и молекулах, объединяя атомы и молекулы в различные вещества. Оно определяет хими­ческие и биологические процессы. Электромагнитное взаимодействие является причиной таких явлений, как упругость, трение, вязкость, магнетизм и составляет природу соответствующих сил. На движение макроскопических электронейтральных тел оно существенного влияния не оказывает.

Сильное взаимодействие осуществляется между адронами, именно оно удерживает нуклоны в ядре.

В 1967 г. Шелдон Глэшоу, Абдус Салам и Стивен Вайнберг создали теорию, объединяющую электромагнитное и слабое взаимодействия в единое электрослабое взаимодействие с радиусом действия 10~17 м, в пределах которого исчезает различие между слабым и электромагнитным вза­имодействиями.

В настоящее время выдвинута теория великого объединения, согласно которой существуют лишь два типа взаимодействий: объединенное, куда входятсильное, слабое и электромагнитное взаимодействия, и гравитационное взаимодействие.

Есть также предположение, что все четыре взаимодействия являются частными случаями про­явления единого взаимодействия.

В механике взаимное действие тел друг на друга характеризуется силой (см.Сила). Более общей характеристикой взаимодействия является потенциальная энергия (см. Потенциальная энергия).

Силы в механике делятся на гравитационные, упругости и трения. Как уже упоминалось выше, природа механических сил обусловлена гравитационным и электромагнитным взаимодейс­твиями. Только эти взаимодействия можно рассматривать как силы в смысле механики Ньютона. Сильные (ядерные) и слабые взаимодействия проявляются на таких малых расстояниях, при ко­торых законы механики Ньютона, а вместе с ними и понятие механической силы теряют смысл. Поэтому термин «сила» в этих случаях следует воспринимать как «взаимодействие».