"Возрастание и убывание функции"

Цели урока:

1. Научить находить промежутки монотонности.

2. Развитие мыслительных способностей, обеспечивающих анализ ситуации и разработку адекватных способов действия (анализ, синтез, сравнение).

3. Формирование интереса к предмету.

Ход урока

Сегодня мы продолжаем изучать приложение производной и рассмотрим вопрос о её применениик исследованию функций. Фронтальная работа

А теперь дадим некоторые определения свойствам функции “Мозговой штурм”

1. Что называют функцией?

2. Как называется переменная Х?

3. Как называется переменная Y?

4. Что называется областью определения функции?

5. Что называется множеством значения функции?

6. Какая функция называется чётной?

7. Какая функция называется нечётной?

8. Что можно сказать о графике чётной функции?

9. Что можно сказать о графике нечётной функции?

10. Какая функция называется возрастающей?

11. Какая функция называется убывающей?

12. Какая функция называется периодической?

Математика изучает математические модели. Одной из главнейших математических моделей является функция. Существуют разные способы описания функций. Какой самый наглядный?

– Графический.

– Как построить график?

– По точкам.

Этот способ подойдет, если заранее известно, как примерно выглядит график. Например, что является графиком квадратичной функции, линейной функции, обратной пропорциональности, функции y = sinx? (Демонстрируются соответствующие формулы, учащиеся называют кривые, являющиеся графиками.)

А что если требуется построить график функции или еще более сложной? Можно найти несколько точек, но как ведет себя функция между этими точками?

Поставить на доске две точки, попросить учеников показать, как может выглядеть график “между ними”:

Выяснить, как ведет себя функция, помогает ее производная.

Откройте тетради, запишите число, классная работа.

Цель урока: узнать, как связан график функции с графиком ее производной, и научиться решать задачи двух видов:

1. По графику производной находить промежутки возрастания и убывания самой функции, а также точки экстремума функции;

2. По схеме знаков производной на промежутках находить интервалы возрастания и убывания самой функции, а также точки экстремума функции.

Подобные задания отсутствуют в наших учебниках, но встречаются в тестах единого государственного экзамена (часть А и В).

Сегодня на уроке мы рассмотрим небольшой элемент работы второго этапа изучения процесса, исследование одного из свойств функции - определение промежутков монотонности

Для решения поставленной задачи, нам необходимо вспомнить некоторые вопросы, рассмотренные ранее.

Итак, запишем тему сегодняшнего урока: Признаки возрастания и убывания функции.

Признаки возрастания и убывания функции:

Если производная данной функции положительна для всех значений х в интервале (а; в), т.е.f"(x) > 0, то функция в этом интервале возрастает.
Если производная данной функции отрицательна для всех значений х в интервале(а; в), т.е.f"(x) < 0, то функция в этом интервале убывает

Порядок нахождения промежутков монотонности:

Найти область определения функции.

1. Найти первую производную функции.

2. решать самой на доске

Найти критические точки, исследовать знак первой производной в промежутках, на которые найденные критические точки делят область определения функции. Найти промежутки монотонности функций:

а) область определения,

б) найдем первую производную:,

в)найдем критические точки: ; , и

3. Исследуем знак производной в полученных промежутках, решение представим в виде таблицы.

указатьна точки экстремума

Рассмотрим несколько примеровисследования функции на возрастание и убывание.

Достаточное условие существования максимума состоит в смене знака производной при переходе через критическую точку с "+" на "-", а для минимума с "-" на "+". Если при переходе через критическую точку смены знака производной не происходит, то в данной точке экстремума нет

1. Найти Д(f).

2. Найти f"(x).

3. Найти стационарные точки, т.е. точки, где f"(x) = 0 или f"(x) не существует.
(Производная равна 0 в нулях числителя, производная не существует в нулях знаменателя)

4. Расположить Д(f) и эти точки на координатной прямой.

5. Определить знаки производной на каждом из интервалов

6. Применить признаки.

7. Записать ответ.

Закрепление нового материала.

Учащиеся работают в парах, решение записывают в тетрадях.

а) у = х³ - 6 х² + 9 х - 9;

б) у = 3 х² - 5х + 4.

Двое работают у доски.

а) у = 2 х³ – 3 х² – 36 х + 40

б) у = х4-2 х³

3.Итог урока

Домашнее задание: тест (дифференцированный)

Нахождение по графику промежутков возрастания и убывания квадратичной функции ху 0 11 Функция является убывающей на промежутке, если большему значению х соответствует меньшее значение у, т. е. при движении слева направо график идет вниз (просмотр по щелчку) Функция является возрастающей на промежутке, если большему значению х соответствует большее значение у, т. е. при движении слева направо график идет вверх (просмотр по щелчку)

8 у х0 11 Найти по графику и записать промежутки возрастания и убывания квадратичной функции Обратите внимание, что график квадратичной функции состоит из двух ветвей. Ветви соединяются между собой вершиной параболы. При записи промежутков возрастания и убывания самую главную роль будет играть абсцисса (х) вершины параболы Пример 1. Рассмотрим движение по каждой ветке параболы отдельно: по левой ветке при движении слева направо график идет вниз, значит функция убывает; по правой ветке — график идет вверх, значит функция возрастает. Ответ: промежуток убывания (- ∞; -1 ] ; промежуток возрастания [ -1; +∞)

8 у х0 11 Найти по графику и записать промежутки возрастания и убывания квадратичной функции Пример 2. Рассмотрим движение по каждой ветке параболы отдельно: по левой ветке при движении слева направо график идет вверх, значит функция возрастает; по правой ветке — график идет вниз, значит функция убывает. Ответ: промежуток возрастания (- ∞; 3 ] ; промежуток убывания [ 3; +∞).

Задания для самостоятельного решения (выполнять в тетради) Задание 1 Задание 2 Задание 3 Задание 4 Приложение

промежуток возрастания (- ∞; -1 ] ; промежуток убывания [ -1; +∞). сверить ответ. Найти по графику и записать промежутки возрастания и убывания квадратичной функции 88 у х0 1 11 просмотреть анимацию записать ответ самостоятельно

« промежуток убывания (- ∞; 3 ] ; промежуток возрастания [ 3; +∞). Найти по графику и записать промежутки возрастания и убывания квадратичной функции у х 11 0 8 2 просмотреть анимацию записать ответ самостоятельно сверить ответ

Найти по графику и записать промежутки возрастания и убывания квадратичной функции 8 у 0 1 1 х3 просмотреть анимацию записать ответ самостоятельно промежуток убывания (- ∞; 0 ] ; промежуток возрастания [ 0; +∞). сверить ответ

«Найти по графику и записать промежутки возрастания и убывания квадратичной функции 8 1 у 01 х4 просмотреть анимацию записать ответ самостоятельно промежуток возрастания (- ∞; — 0, 5 ] ; промежуток убывания [ — 0, 5; +∞). сверить ответ

Приложение Граничная точка промежутков возрастания и убывания является абсциссой вершины параболы Граничная точка промежутков возрастания и убывания всегда записывается в ответ с квадратной скобкой, т. к. квадратичная функция непрерывна

Экстремумы функции

Определение 2

Точка $x_0$ называется точкой максимума функции $f(x)$, если существует такая окрестность данной точки, что для всех $x$ из этой окрестность выполняется неравенство $f(x)\le f(x_0)$.

Определение 3

Точка $x_0$ называется точкой максимума функции $f(x)$, если существует такая окрестность данной точки, что для всех $x$ из этой окрестность выполняется неравенство $f(x)\ge f(x_0)$.

Понятие экстремума функции тесно связано с понятием критической точки функции. Введем её определение.

Определение 4

$x_0$ называется критической точкой функции $f(x)$, если:

1) $x_0$ - внутренняя точка области определения;

2) $f"\left(x_0\right)=0$ или не существует.

Для понятия экстремума можно сформулировать теоремы о достаточных и необходимых условиях его существования.

Теорема 2

Достаточное условие экстремума

Пусть точка $x_0$ является критической для функции $y=f(x)$ и лежит в интервале $(a,b)$. Пусть на каждом интервале $\left(a,x_0\right)\ и\ (x_0,b)$ производная $f"(x)$ существует и сохраняет постоянный знак. Тогда:

1) Если на интервале $(a,x_0)$ производная $f"\left(x\right)>0$, а на интервале $(x_0,b)$ производная $f"\left(x\right)

2) Если на интервале $(a,x_0)$ производная $f"\left(x\right)0$, то точка $x_0$ - точка минимума для данной функции.

3) Если и на интервале $(a,x_0)$, и на интервале $(x_0,b)$ производная $f"\left(x\right) >0$ или производная $f"\left(x\right)

Данная теорема проиллюстрирована на рисунке 1.

Рисунок 1. Достаточное условие существования экстремумов

Примеры экстремумов (Рис. 2).

Рисунок 2. Примеры точек экстремумов

Правило исследования функции на экстремум

2) Найти производную $f"(x)$;

7) Сделать выводы о наличии максимумов и минимумов на каждом промежутке, используя теорему 2.

Возрастание и убывание функции

Введем, для начала, определения возрастающей и убывающей функций.

Определение 5

Функция $y=f(x)$, определенная на промежутке $X$, называется возрастающей, если для любых точек $x_1,x_2\in X$ при $x_1

Определение 6

Функция $y=f(x)$, определенная на промежутке $X$, называется убывающей, если для любых точек $x_1,x_2\in X$ при $x_1f(x_2)$.

Исследование функции на возрастание и убывание

Исследовать функции на возрастание и убывание можно с помощью производной.

Для того чтобы исследовать функцию на промежутки возрастания и убывания, необходимо сделать следующее:

1) Найти область определения функции $f(x)$;

2) Найти производную $f"(x)$;

3) Найти точки, в которых выполняется равенство $f"\left(x\right)=0$;

4) Найти точки, в которых $f"(x)$ не существует;

5) Отметить на координатной прямой все найденные точки и область определения данной функции;

6) Определить знак производной $f"(x)$ на каждом получившемся промежутке;

7) Сделать вывод: на промежутках, где $f"\left(x\right)0$ функция возрастает.

Примеры задач на исследования функций на возрастание, убывание и наличие точек экстремумов

Пример 1

Исследовать функцию на возрастание и убывание, и наличие точек максимумов и минимумов: $f(x)={2x}^3-15x^2+36x+1$

Так как первые 6 пунктов совпадают, проведем для начала их.

1) Область определения - все действительные числа;

2) $f"\left(x\right)=6x^2-30x+36$;

3) $f"\left(x\right)=0$;

\ \ \

4) $f"(x)$ существует во всех точках области определения;

5) Координатная прямая:

Рисунок 3.

6) Определить знак производной $f"(x)$ на каждом промежутке:

\ \ .

- Точки экстремума функции одной переменной. Достаточные условия экстремума



Пусть функция f(x), определенная и непрерывная в промежутке , не является в нем монотонной. Найдутся такие части [ , ] промежутка , в которых наибольшее и наименьшее значение достигается функцией во внутренней точке, т.е. между и.

Говорят, что функция f(x) имеет в точке максимум (или минимум), если эту точку можно окружить такой окрестностью (x 0 - ,x 0 +), содержащейся в промежутке, где задана функция, что для всех её точек выполняется неравенство.

f(x) < f(x 0)(или f(x)>f(x 0))

Иными словами, точка x 0 доставляет функции f(x) максимум (минимум), если значение f(x 0) оказывается наибольшим (наименьшим) из значений, принимаемых функцией в некоторой (хотя бы малой) окрестности этой точки. Отметим, что самое определение максимума (минимума) предполагает, что функция задана по обе стороны от точки x 0 .

Если существует такая окрестность, в пределах которой (при x=x 0) выполняется строгое неравенство

f(x)f(x 0)

то говорят, что функция имеет в точке x 0 собственный максимум (минимум), в противном случае – несобственный.

Если функция имеет максимумы в точках x 0 и x 1 , то, применяя к промежутку вторую теорему Вейерштрасса, видим, что наименьшего своего значения в этом промежутке функция достигает в некоторой точке x 2 между x 0 и x 1 и имеет там минимум. Аналогично, между двумя минимумами непременно найдется максимум. В том простейшем (и на практике – важнейшим) случае, когда функция имеет вообще лишь конечное число максимумов и минимумов, они просто чередуются.

Заметим, что для обозначения максимума или минимума существует и объединяющий их термин – экстремум.

Понятия максимум (max f(x)) и минимум (min f(x)) являются локальными свойствами функции и имеют место в определенной точке х 0 . Понятия наибольшего (sup f(x)) и наименьшего (inf f(x)) значений относятся к конечному отрезку и являются глобальными свойствами функции на отрезке.

Из рисунка 1 видно, что в точках х 1 и х 3 локальные максимумы, а в точках х 2 и х 4 – локальные минимумы. Однако, наименьшего значения функция достигает в точке х=а, а наибольшего – в точке х=b.

Поставим задачу о разыскании всех значений аргумента, доставляющих функции экстремум. При решении ее основную роль будет играть производная.

Предположим сначала, что для фунции f(x) в промежутке(a,b) существует конечная производная. Если в точке х 0 функция имеет экстремум, то, применяя к промежутку (х 0 - ,х 0 +), о которой была речь выше, теорему Ферма, заключаем, что f(x)=0 этом состоит необходимое условие экстремума. Экстремум следует искать только в тех точках, где производная равна нулю.

Не следует, думать, однако, что каждая точка, в которой производная равна нулю, доставляет функции экстремум: указанное только что необходимое условие неявляется достаточным