Пример.

Экспериментальные данные о значениях переменных х и у приведены в таблице.

В результате их выравнивания получена функция

Используя метод наименьших квадратов , аппроксимировать эти данные линейной зависимостью y=ax+b (найти параметры а и b ). Выяснить, какая из двух линий лучше (в смысле метода наименьших квадратов) выравнивает экспериментальные данные. Сделать чертеж.

Суть метода наименьших квадратов (МНК).

Задача заключается в нахождении коэффициентов линейной зависимости, при которых функция двух переменных а и b принимает наименьшее значение. То есть, при данных а и b сумма квадратов отклонений экспериментальных данных от найденной прямой будет наименьшей. В этом вся суть метода наименьших квадратов.

Таким образом, решение примера сводится к нахождению экстремума функции двух переменных.

Вывод формул для нахождения коэффициентов.

Составляется и решается система из двух уравнений с двумя неизвестными. Находим частные производные функции по переменным а и b , приравниваем эти производные к нулю.

Решаем полученную систему уравнений любым методом (например методом подстановки или ) и получаем формулы для нахождения коэффициентов по методу наименьших квадратов (МНК).

При данных а и b функция принимает наименьшее значение. Доказательство этого факта приведено .

Вот и весь метод наименьших квадратов. Формула для нахождения параметра a содержит суммы , , , и параметр n - количество экспериментальных данных. Значения этих сумм рекомендуем вычислять отдельно. Коэффициент b находится после вычисления a .

Пришло время вспомнить про исходый пример.

Решение.

В нашем примере n=5 . Заполняем таблицу для удобства вычисления сумм, которые входят в формулы искомых коэффициентов.

Значения в четвертой строке таблицы получены умножением значений 2-ой строки на значения 3-ей строки для каждого номера i .

Значения в пятой строке таблицы получены возведением в квадрат значений 2-ой строки для каждого номера i .

Значения последнего столбца таблицы – это суммы значений по строкам.

Используем формулы метода наименьших квадратов для нахождения коэффициентов а и b . Подставляем в них соответствующие значения из последнего столбца таблицы:

Следовательно, y = 0.165x+2.184 - искомая аппроксимирующая прямая.

Осталось выяснить какая из линий y = 0.165x+2.184 или лучше аппроксимирует исходные данные, то есть произвести оценку методом наименьших квадратов.

Оценка погрешности метода наименьших квадратов.

Для этого требуется вычислить суммы квадратов отклонений исходных данных от этих линий и , меньшее значение соответствует линии, которая лучше в смысле метода наименьших квадратов аппроксимирует исходные данные.

Так как , то прямая y = 0.165x+2.184 лучше приближает исходные данные.

Графическая иллюстрация метода наименьших квадратов (мнк).

На графиках все прекрасно видно. Красная линия – это найденная прямая y = 0.165x+2.184 , синяя линия – это , розовые точки – это исходные данные.

Для чего это нужно, к чему все эти аппроксимации?

Я лично использую для решения задач сглаживания данных, задач интерполяции и экстраполяции (в исходном примере могли бы попросить найти занчение наблюдаемой величины y при x=3 или при x=6 по методу МНК). Но подробнее поговорим об этом позже в другом разделе сайта.

Доказательство.

Чтобы при найденных а и b функция принимала наименьшее значение, необходимо чтобы в этой точке матрица квадратичной формы дифференциала второго порядка для функции была положительно определенной. Покажем это.

Постановка задачи аппроксимации по МНК. Условия наилучшего приближения.

Если набор экспериментальных данных получен со значительной погрешностью, то интерполяция не только не требуется, но и нежелательна! Здесь требуется построить кривую, которая воспроизводила бы график исходной экспериментальной закономерности, т.е. была бы максимально близка к экспериментальным точкам, но в то же время была бы нечувствительна к случайным отклонениям измеряемой величины.

Введем непрерывную функцию φ(x) для аппроксимации дискретной зависимости f(x i ) , i = 0…n . Будем считать, что φ(x) построена по условию наилучшего квадратичного приближения , если

. (1)

Весу ρ для i -й точки придают смысл точности измерения данного значения: чем больше ρ , тем ближе аппроксимирующая кривая «притягивается» к данной точке. В дальнейшем будем по умолчанию полагать ρ = 1 для всех точек.

Рассмотрим случай линейной аппроксимации :

φ(x) = c 0 φ 0 (x) + c 1 φ 1 (x) + … + c m φ m (x) , (2)

где φ 0 …φ m – произвольные базисные функции , c 0 …c m – неизвестные коэффициенты, m < n . Если число коэффициентов аппроксимации взять равным числу узлов, то среднеквадратичная аппроксимация совпадет с интерполяцией Лагранжа, при этом, если не учитывать вычислительную погрешность, Q = 0.

Если известна экспериментальная (исходная) погрешность данных ξ , то выбор числа коэффициентов, то есть величины m , определяется условием:

Иными словами, если , число коэффициентов аппроксимации недостаточно для правильного воспроизведения графика экспериментальной зависимости. Если , многие коэффициенты в (2) не будут иметь физического смысла.

Для решения задачи линейной аппроксимации в общем случае следует найти условия минимума суммы квадратов отклонений для (2). Задачу на поиск минимума можно свести к задаче поиска корня системы уравнений , k = 0…m . (4) .

Подстановка (2) в (1), а затем расчет (4) приведет в итоге к следующей системе линейных алгебраических уравнений:

Далее следует решить полученную СЛАУ относительно коэффициентов c 0 …c m . Для решения СЛАУ обычно составляется расширенная матрица коэффициентов, которую называют матрицей Грама , элементами которой являются скалярные произведения базисных функций и столбец свободных коэффициентов:

,

где , , j = 0…m, k = 0…m .

После того как с помощью, например, метода Гаусса найдены коэффициенты c 0 …c m , можно построить аппроксимирующую кривую или вычислить координаты заданной точки. Таким образом, задача аппроксимации решена.

Аппроксимация каноническим полиномом.

Выберем базисные функции в виде последовательности степеней аргумента x:

φ 0 (x) = x 0 = 1; φ 1 (x) = x 1 = x ; φ m (x) = x m , m < n .

Расширенная матрица Грама для степенного базиса будет выглядеть следующим образом:

Особенность вычислений такой матрицы (для уменьшения количества выполняемых действий) состоит в том, что необходимо сосчитать только элементы первой строки и двух последних столбцов: остальные элементы заполняются сдвигом предшествующей строки (за исключением двух последних столбцов) на одну позицию влево. В некоторых языках программирования, где отсутствует быстрая процедура возведения в степень, пригодится алгоритм расчета матрицы Грама, представленный далее.

Выбор базисных функций в виде степеней x не является оптимальным с точки зрения достижения наименьшей погрешности. Это является следствием неортогональности выбранных базисных функций. Свойство ортогональности заключается в том, что для каждого типа полинома существует отрезок [x 0 , x n ], на котором обращаются в нуль скалярные произведения полиномов разного порядка:

, j k, ρ – некоторая весовая функция.

Если бы базисные функции были ортогональны, то все недиагональные элементы матрицы Грама были бы близки к нулю, что увеличило бы точность вычислений, в противном случае при определитель матрицы Грама очень быстро стремится к нулю, т.е. система становится плохо обусловленной.

Аппроксимация ортогональными классическими полиномами.

Представленные ниже полиномы, относящиеся ко многочленам Якоби , обладают свойством ортогональности в изложенном выше смысле. То есть, для достижения высокой точности вычислений рекомендуется выбирать базисные функции для аппроксимации в виде этих полиномов.

АППРОКСИМАЦИЯ ФУНКЦИИ МЕТОДОМ НАИМЕНЬШИХ

КВАДРАТОВ


1. Цель работы

2. Методические указания

2.2 Постановка задачи

2.3 Методика выбора аппроксимирующей функции

2.4 Общая методика решения

2.5 Методика решения нормальных уравнений

2.7 Методика вычисления обратной матрицы

3. Ручной счет

3.1 Исходные данные

3.2 Система нормальных уравнений

3.3 Решение систем методом обратной матрицы

4. Схема алгоритмов

5. Текст программы

6. Результаты машинного расчета

1. Цель работы

Настоящая курсовая работа является завершающим разделом дисциплины «Вычислительная математика и программирование» и требует от студента в процессе ее выполнения решения следующих задач:

а) практического освоения типовых вычислительных методов прикладной информатики; б) совершенствования навыков разработки алгоритмов и построения программ на языке высокого уровня.

Практическое выполнение курсовой работы предполагает решение типовых инженерных задач обработки данных с использованием методов матричной алгебры, решения систем линейных алгебраических уравнений численного интегрирования. Навыки, приобретаемые в процессе выполнения курсовой работы, являются основой для использования вычислительных методов прикладной математики и техники программирования в процессе изучения всех последующих дисциплин при выполнении курсовых и дипломных проектов.

2. Методические указания

2.2 Постановка задачи

При изучении зависимостей между величинами важной задачей является приближенное представление (аппроксимация) этих зависимостей с помощью известных функций или их комбинаций, подобранных надлежащим образом. Подход к такой задаче и конкретный метод её решения определяются выбором используемого критерия качества приближения и формой представления исходных данных.

2.3 Методика выбора аппроксимирующей функции

Аппроксимирующую функцию выбирают из некоторого семейства функций, для которого задан вид функции, но остаются неопределенными (и подлежат определению) её параметры т.е.

Определение аппроксимирующей функции φ разделяется на два основных этапа:

Подбор подходящего вида функции ;

Нахождение ее параметров в соответствии с критерием МНК.

Подбор вида функции представляет собой сложную задачу, решаемую методом проб и последовательных приближений. Исходные данные, представленные в графической форме (семейства точек или кривые), сопоставляется с семейством графиков ряда типовых функций, используемых обычно для целей аппроксимации. Некоторые типы функций , используемых в курсовой работе, приведены в таблице 1.

Более подробные сведения о поведении функций, которые могут быть использованы в задачах аппроксимации, можно найти в справочной литературе. В большинстве заданий курсовой работы вид аппроксимирующей функции задан.

2.4 Общая методика решения

После того как выбран вид аппроксимирующей функции (или эта функция задана) и, следовательно, определена функциональная зависимость (1), необходимо найти в соответствии с требованиями МНК значения параметров С 1 , С 2 , …, С m . Как уже указывалось, параметры должны быть определены таком образом, чтобы значение критерия в каждой из рассматриваемых задач было наименьшим по сравнению с его значением при других возможных значениях параметров.

Для решения задачи подставим выражение (1) в соответствующее из выражений и проведем необходимые операции суммирования или интегрирования (в зависимости от вида I). В результате величина I, именуемая в дальнейшем критерием аппроксимации, представляется функцией искомых параметров

Последующее сводиться к отысканию минимума этой функции переменных С k ; определение значений С k =C k * , к=1,m, соответствующих этому элементу I, и является целью решаемой задачи.


Типы функций Таблица 1

Вид функции Название функции
Y=C 1 +C 2 ·x Линейная
Y=C 1 +C 2 ·x+C 3 ·x 2 Квадратичная (параболическая)
Y= Рациональная(полином n -й степени)
Y=C 1 +C 2 · Обратно пропорциональная
Y=C 1 +C 2 · Степенная дробно-рациональная
Y= Дробно-рациональная(первой степени)
Y=C 1 +C 2 ·X C3 Степенная
Y=C 1 +C 2 ·a C3 · x Показательная
Y=C 1 +C 2 ·log a x Логарифмическая
Y=C 1 +C 2 ·X n (0 Иррациональная, алгебраическая
Y=C 1 ·sinx+C 2 cosx Тригонометрические функции (и обратные к ним)

Возможны следующие два подхода к решению этой задачи: использование известных условий минимума функции нескольких переменных или непосредственное отыскание точки минимума функции каким – либо из численных методов.

Для реализации первого из указанных подходов воспользуемся необходимым условием минимума функции (1) нескольких переменных, в соответствии с которыми в точке минимума должны быть равны нулю частные производные этой функции по всем ее аргументам

Полученные m равенств следует рассматривать как систему уравнений относительно искомых С 1 , С 2 ,…, С m . При произвольном виде функциональной зависимости (1) уравнения (3) оказывается нелинейным относительно величин C k и их решение требует применение приближенных численных методов.

Использование равенства (3) дают, лишь необходимые, но недостаточные условия минимума (2). Поэтому требуется уточнить, обеспечивают ли найденные значения C k * именно минимум функции . В общем случае такое уточнение выходит за рамки данной курсовой работы, и предлагаемые для курсовой работы задания подобраны так, что найденное решение системы (3) отвечает именно минимуму I. Однако, поскольку величина I неотрицательна (как сумма квадратов) и нижняя её граница есть 0 (I=0), то, если существует решение системы (3) единственно, оно отвечает именно минимуму I.

При представлении аппроксимирующей функции общим выражением (1) соответствующие нормальным уравнениям (3) оказываются нелинейными относительно искомых С к. их решение может быть сопряжено со значительными трудностями. В таких случаях предпочтительным являются непосредственный поиск минимума функции в области возможных значений ее аргументов С к, не связанный с использованием соотношений (3). Общая идея подобного поиска сводиться к изменению значений аргументов С к и вычислению на каждом шаге соответствующего значения функции I до минимального или достаточно близко к нему.

2.5 Методика решения нормальных уравнений

Один из возможных способов минимизации критерия аппроксимации (2) предполагает решение системы нормальных уравнений (3). При выборе в качестве аппроксимирующей функции линейной функции искомых параметров нормальные уравнения представляют собой систему линейных алгебраических уравнений.

Систему n линейных уравнений общего вида:

(4) можно записать посредством матричных обозначений в следующем виде: А·Х=В,

; ; (5)

квадратная матрица А называется матрицей системы , а вектора Х и В соответственно вектором-столбцом неизвестных систем и вектором-столбцом ее свободных членов .

В матричном виде исходную систему n линейных уравнений можно записать и так:

Решение системы линейных уравнений сводиться к отысканию значений элементов вектора-столбца (х i), называемых корнями системы. Чтобы эта система имела единственное решение, входящее в нее n уравнение должно быть линейно независимым. Необходимым и достаточным условием этого является неравенство нулю определителя системы, т.е. Δ=detA≠0.

Алгоритм решения системы линейных уравнений подразделяется на прямые и итерационные. На практике никакой метод не может быть бесконечным. Для получения точного решения итерационные методы требуют бесконечного числа арифметических операций. практически это число приходиться брать конечным и поэтому решение в принципе имеет некоторую ошибку, даже если пренебречь ошибками округлений, сопровождающими большинство вычислений. Что же касается прямых методов, то они даже при конечном числе операций могут в принципе дать точное решение, если оно существует.

Прямые и конечные методы позволяют найти решение системы уравнений за конечное число шагов. Это решение будет точным, если все промежутки вычисления проводятся с ограниченной точностью.

2.7 Методика вычисления обратной матрицы

Один из методов решения системы линейных уравнений (4), записываем в матричной форме А·Х=В, связан с использованием обратной матрицы А -1 . В этом случае решение системы уравнений получается в виде

где А -1 –матрица, определяемая следующим образом.

Пусть А –квадратная матрица размером n х n с ненулевым определителем detA≠0. Тогда существует обратная матрица R=A -1 , определяемая условием A·R=E,

где Е –единичная матрица, все элементы главной диагонали которой равны I, а элементы вне этой диагонали -0, Е=, где Е i –вектор-столбец. Матрица К –квадратная матрица размером n х n.

где Rj –вектор-столбец.

Рассмотрим ее первый столбец R=(r 11 , r 21 ,…, r n 1) T , где Т –означает транспонирование. Нетрудно проверить, что произведение A·R равно первому столбцу E 1 =(1, 0, …, 0) Т единичной матрицы Е, т.е. вектор R 1 можно рассмотреть как решение системы линейных уравнений A·R 1 =E 1. Аналогично m –й столбец матрицы R , Rm, 1≤ m ≤ n, представляет собой решение уравнения A·Rm=Em, где Em=(0, …, 1, 0) T m –й столбец единичной матрицы Е.

Таким образом, обратная матрица R представляет собой набор из решений n систем линейных уравнений

A·Rm=Em , 1≤ m ≤ n.

Для решения этих систем можно применять любые методы, разработанные для решения алгебраических уравнений. Однако метод Гаусса дает возможность решать все эти n систем одновременно, а независимо друг от друга. Действительно, все эти системы уравнений отличаются только правой частью, а все преобразования, которые проводятся в процессе прямого хода метода Гаусса, полностью определяются элементами матрицы коэффициентов (матрицы А). Следовательно, в схемах алгоритмов изменению подлежат только блоки, связанные с преобразованием вектора В. В нашем случае одновременно будут преобразовываться n векторов Em, 1≤ m ≤ n. Результатом решения также будет не один вектор, а n векторов Rm, 1≤ m ≤ n.

3. Ручной счет

3.1 Исходные данные

Xi 0,3 0,5 0,7 0,9 1,1
Yi 1,2 0,7 0,3 -0,3 -1,4

3.2 Система нормальных уравнений

3.3 Решение систем методом обратной матрицы

аппроксимация квадрат функция линейный уравнение

5 3,5 2,6 0,5 5 3,5 2,6 0,5

3,5 2,85 2,43 -0,89 0 0,4 0,61 -1,24

2,56 2,43 2,44 -1,86 0 0,638 1,109 -2,116

0 0,4 0,61 -1,24

0 0 0,136 -0,138

Результаты расчета:

С 1 =1,71; С 2 =-1,552; С 3 =-1,015;

Аппроксимирующая функция:

4 . Текст программы

mass=arrayof real;

mass1=array of real;

mass2=array of real;

X,Y,E,y1,delta: mass;

big,r,sum,temp,maxD,Q:real;

i,j,k,l,num: byte;

Procedure VVOD(var E: mass);

For i:=1 to 5 do

Function FI(i ,k: integer): real;

if i=1 then FI:=1;

if i=2 then FI:=Sin(x[k]);

if i=3 then FI:=Cos(x[k]);

Procedure PEREST(i:integer;var a:mass1;var b:mass2);

for l:= i to 3 do

if abs(a) > big then

big:=a; writeln (big:6:4);

writeln("Перестановкауравнений");

if num<>i then

for j:=i to 3 do

a:=a;

writeln("Введите значения Х");

writeln("__________________");

writeln("‚Введите значения Y");

writeln("___________________");

For i:=1 to 3 do

For j:=1 to 3 do

For k:=1 to 5 do

begin A:= A+FI(i,k)*FI(j,k); write(a:7:5); end;

writeln("________________________");

writeln("МатрицаКоэффициентовAi,j");

For i:=1 to 3 do

For j:=1 to 3 do

write (A:5:2, " ");

For i:=1 to 3 do

For j:=1 to 5 do

B[i]:=B[i]+Y[j]*FI(i,j);

writeln("__________________________");

writeln(‘Матрица Коэффициентов Bi ");

For i:=1 to 3 do

write(B[i]:5:2, " ");

for i:=1 to 2 do

for k:=i+1 to 3 do

Q:=a/a; writeln("g=",Q);

for j:=i+1 to 3 do

a:=a-Q*a; writeln("a=",a);

b[k]:=b[k]-Q*b[i]; writeln("b=",b[k]);

x1[n]:=b[n]/a;

for i:=2 downto 1 do

for j:=i+1 to 3 do

sum:=sum-a*x1[j];

x1[i]:=sum/a;

writeln("__________________________");

writeln ("Значение коэффициентов ");

writeln("_________________________");

for i:=1 to 3 do

writeln(" C",i,"=",x1[i]);

for i:=1 to 5 do

y1[i]:= x1[k]*FI(k,i) + x1*FI(k+1,i) + x1*FI(k+2,i);

delta[i]:=abs (y[i]-y1[i]);

writeln (y1[i]);

for i:=1 to 3 do

write (x1[i]:7:3);

for i:=1 to 5 do

if delta[i]>maxD then maxD:=delta;

writeln ("max Delta= ", maxD:5:3);

5 . Результаты машинного расчета

С 1 =1,511; С 2 =-1,237; С 3 =-1,11;

Вывод

В процессе выполнения курсовой работы я практически освоил типовые вычислительные методы прикладной математики, совершенствовал навыки разработки алгоритмов и построения программ на языках высокого уровня. Получил навыки, являющиеся основой для использования вычислительных методов прикладной математики и техники программирования в процессе изучения всех последующих дисциплин при выполнении курсовых и дипломных проектов.

Аппроксимация опытных данных – это метод, основанный на замене экспериментально полученных данных аналитической функцией наиболее близко проходящей или совпадающей в узловых точках с исходными значениями (данными полученными в ходе опыта или эксперимента). В настоящее время существует два способа определения аналитической функции:

С помощью построения интерполяционного многочлена n-степени, который проходит непосредственно через все точки заданного массива данных. В данном случае аппроксимирующая функция представляется в виде: интерполяционного многочлена в форме Лагранжа или интерполяционного многочлена в форме Ньютона.

С помощью построения аппроксимирующего многочлена n-степени, который проходит в ближайшей близости от точек из заданного массива данных. Таким образом, аппроксимирующая функция сглаживает все случайные помехи (или погрешности), которые могут возникать при выполнении эксперимента: измеряемые значения в ходе опыта зависят от случайных факторов, которые колеблются по своим собственным случайным законам (погрешности измерений или приборов, неточность или ошибки опыта). В данном случае аппроксимирующая функция определяется по методу наименьших квадратов.

Метод наименьших квадратов (в англоязычной литературе Ordinary Least Squares, OLS) - математический метод, основанный на определении аппроксимирующей функции, которая строится в ближайшей близости от точек из заданного массива экспериментальных данных. Близость исходной и аппроксимирующей функции F(x) определяется числовой мерой, а именно: сумма квадратов отклонений экспериментальных данных от аппроксимирующей кривой F(x) должна быть наименьшей.

Аппроксимирующая кривая, построенная по методу наименьших квадратов

Метод наименьших квадратов используется:

Для решения переопределенных систем уравнений, когда количество уравнений превышает количество неизвестных;

Для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений;

Для аппроксимации точечных значений некоторой аппроксимирующей функцией.

Аппроксимирующая функция по методу наименьших квадратов определяется из условия минимума суммы квадратов отклонений расчетной аппроксимирующей функции от заданного массива экспериментальных данных. Данный критерий метода наименьших квадратов записывается в виде следующего выражения:

Значения расчетной аппроксимирующей функции в узловых точках ,

Заданный массив экспериментальных данных в узловых точках .

Квадратичный критерий обладает рядом "хороших" свойств, таких, как дифференцируемость, обеспечение единственного решения задачи аппроксимации при полиномиальных аппроксимирующих функциях.

В зависимости от условий задачи аппроксимирующая функция представляет собой многочлен степени m

Степень аппроксимирующей функции не зависит от числа узловых точек, но ее размерность должна быть всегда меньше размерности (количества точек) заданного массива экспериментальных данных.

∙ В случае если степень аппроксимирующей функции m=1, то мы аппроксимируем табличную функцию прямой линией (линейная регрессия).

∙ В случае если степень аппроксимирующей функции m=2, то мы аппроксимируем табличную функцию квадратичной параболой (квадратичная аппроксимация).

∙ В случае если степень аппроксимирующей функции m=3, то мы аппроксимируем табличную функцию кубической параболой (кубическая аппроксимация).

В общем случае, когда требуется построить аппроксимирующий многочлен степени m для заданных табличных значений, условие минимума суммы квадратов отклонений по всем узловым точкам переписывается в следующем виде:

- неизвестные коэффициенты аппроксимирующего многочлена степени m;

Количество заданных табличных значений.

Необходимым условием существования минимума функции является равенству нулю ее частных производных по неизвестным переменным . В результате получим следующую систему уравнений:

Преобразуем полученную линейную систему уравнений: раскроем скобки и перенесем свободные слагаемые в правую часть выражения. В результате полученная система линейных алгебраических выражений будет записываться в следующем виде:

Данная система линейных алгебраических выражений может быть переписана в матричном виде:

В результате была получена система линейных уравнений размерностью m+1, которая состоит из m+1 неизвестных. Данная система может быть решена с помощью любого метода решения линейных алгебраических уравнений (например, методом Гаусса). В результате решения будут найдены неизвестные параметры аппроксимирующей функции, обеспечивающие минимальную сумму квадратов отклонений аппроксимирующей функции от исходных данных, т.е. наилучшее возможное квадратичное приближение. Следует помнить, что при изменении даже одного значения исходных данных все коэффициенты изменят свои значения, так как они полностью определяются исходными данными.

Аппроксимация исходных данных линейной зависимостью

(линейная регрессия)

В качестве примера, рассмотрим методику определения аппроксимирующей функции, которая задана в виде линейной зависимости. В соответствии с методом наименьших квадратов условие минимума суммы квадратов отклонений записывается в следующем виде:

Координаты узловых точек таблицы;

Неизвестные коэффициенты аппроксимирующей функции, которая задана в виде линейной зависимости.

Необходимым условием существования минимума функции является равенству нулю ее частных производных по неизвестным переменным. В результате получаем следующую систему уравнений:

Преобразуем полученную линейную систему уравнений.

Решаем полученную систему линейных уравнений. Коэффициенты аппроксимирующей функции в аналитическом виде определяются следующим образом (метод Крамера):

Данные коэффициенты обеспечивают построение линейной аппроксимирующей функции в соответствии с критерием минимизации суммы квадратов аппроксимирующей функции от заданных табличных значений (экспериментальные данные).

Алгоритм реализации метода наименьших квадратов

1. Начальные данные:

Задан массив экспериментальных данных с количеством измерений N

Задана степень аппроксимирующего многочлена (m)

2. Алгоритм вычисления:

2.1. Определяются коэффициенты для построения системы уравнений размерностью

Коэффициенты системы уравнений (левая часть уравнения)

- индекс номера столбца квадратной матрицы системы уравнений

Свободные члены системы линейных уравнений (правая часть уравнения)

- индекс номера строки квадратной матрицы системы уравнений

2.2. Формирование системы линейных уравнений размерностью .

2.3. Решение системы линейных уравнений с целью определения неизвестных коэффициентов аппроксимирующего многочлена степени m.

2.4.Определение суммы квадратов отклонений аппроксимирующего многочлена от исходных значений по всем узловым точкам

Найденное значение суммы квадратов отклонений является минимально-возможным.

Аппроксимация с помощью других функций

Следует отметить, что при аппроксимации исходных данных в соответствии с методом наименьших квадратов в качестве аппроксимирующей функции иногда используют логарифмическую функцию, экспоненциальную функцию и степенную функцию.

Логарифмическая аппроксимация

Рассмотрим случай, когда аппроксимирующая функция задана логарифмической функцией вида:

КУРСОВАЯ РАБОТА

по дисциплине: Информатика

Тема: Аппроксимация функции методом наименьших квадратов

Введение

1.Постановка задачи

2.Расчётные формулы

Расчёт с помощью таблиц, выполненных средствами Microsoft Excel

Схема алгоритма

Расчет в программе MathCad

Результаты, полученные с помощью функции Линейн

Представление результатов в виде графиков


Введение

Целью курсовой работы является углубление знаний по информатике, развитие и закрепление навыков работы с табличным процессором Microsoft Excel и программным продуктом MathCAD и применение их для решения задач с помощью ЭВМ из предметной области, связанной с исследованиями.

Аппроксимация (от латинского "approximare" -"приближаться") - приближенное выражение каких-либо математических объектов (например, чисел или функций) через другие более простые, более удобные в пользовании или просто более известные. В научных исследованиях аппроксимация применяется для описания, анализа, обобщения и дальнейшего использования эмпирических результатов.

Как известно, между величинами может существовать точная (функциональная) связь, когда одному значению аргумента соответствует одно определенное значение, и менее точная (корреляционная) связь, когда одному конкретному значению аргумента соответствует приближенное значение или некоторое множество значений функции, в той или иной степени близких друг к другу. При ведении научных исследований, обработке результатов наблюдения или эксперимента обычно приходиться сталкиваться со вторым вариантом.

При изучении количественных зависимостей различных показателей, значения которых определяются эмпирически, как правило, имеется некоторая их вариабельность. Частично она задается неоднородностью самих изучаемых объектов неживой и, особенно, живой природы, частично - обуславливается погрешностью наблюдения и количественной обработке материалов. Последнюю составляющую не всегда удается исключить полностью, можно лишь минимизировать ее тщательным выбором адекватного метода исследования и аккуратностью работы. Поэтому при выполнении любой научно-исследовательской работы возникает проблема выявления подлинного характера зависимости изучаемых показателей, этой или иной степени замаскированных неучтенностью вариабельности: значений. Для этого и применяется аппроксимация - приближенное описание корреляционной зависимости переменных подходящим уравнением функциональной зависимости, передающим основную тенденцию зависимости (или ее "тренд").

При выборе аппроксимации следует исходить из конкретной задачи исследования. Обычно, чем более простое уравнение используется для аппроксимации, тем более приблизительно получаемое описание зависимости. Поэтому важно считывать, насколько существенны и чем обусловлены отклонения конкретных значений от получаемого тренда. При описании зависимости эмпирически определенных значений можно добиться и гораздо большей точности, используя какое-либо более сложное, много параметрическое уравнение. Однако нет никакого смысла стремиться с максимальной точностью передать случайные отклонения величин в конкретных рядах эмпирических данных. Гораздо важнее уловить общую закономерность, которая в данном случае наиболее логично и с приемлемой точностью выражается именно двухпараметрическим уравнением степенной функции. Таким образом, выбирая метод аппроксимации, исследователь всегда идет на компромисс: решает, в какой степени в данном случае целесообразно и уместно «пожертвовать» деталями и, соответственно, насколько обобщенно следует выразить зависимость сопоставляемых переменных. Наряду с выявлением закономерностей, замаскированных случайными отклонениями эмпирических данных от общей закономерности, аппроксимация позволяет также решать много других важных задач: формализовать найденную зависимость; найти неизвестные значения зависимой переменной путем интерполяции или, если это допустимо, экстраполяции.

В каждом задании формулируются условия задачи, исходные данные, форма выдачи результатов, указываются основные математические зависимости для решения задачи. В соответствии с методом решения задачи разрабатывается алгоритм решения, который представляется в графической форме.

1. Постановка задачи

1. Используя метод наименьших квадратов функцию, заданную таблично, аппроксимировать:

а) многочленом первой степени;

б) многочленом второй степени;

в) экспоненциальной зависимостью.

Для каждой зависимости вычислить коэффициент детерминированности.

Вычислить коэффициент корреляции (только в случае а).

Для каждой зависимости построить линию тренда.

Используя функцию ЛИНЕЙН вычислить числовые характеристики зависимости от.

Сравнить свои вычисления с результатами, полученными при помощи функции ЛИНЕЙН.

Сделать вывод, какая из полученных формул наилучшим образом аппроксимирует функцию.

Написать программу на одном из языков программирования и сравнить результаты счета с полученными выше.

Вариант 3. Функция задана табл. 1.

Таблица 1.

xyxyxyxyxy0.281.052.349.113.3329.434.2386.445.55187.540.872.872.6516.863.4137.454.8390.856.32200.451.656.432.7717.973.5542.444.9299.066.66212.971.998.962.8318.993.8556.945.14120.457.13275.742.088.083.0623.754.0175.085.23139.657.25321.43

2. Расчётные формулы

Часто при анализе эмпирических данных возникает необходимость найти функциональную зависимость между величинами x и y, которые получены в результате опыта или измерений.

Хi (независимая величина) задается экспериментатором, а yi , называемая эмпирическими или опытными значениями получается в результате опыта.

Аналитический вид функциональной зависимости, существующей между величинами x и y обычно неизвестен, поэтому возникает практически важная задача - найти эмпирическую формулу

(где - параметры), значения которой при возможно мало отличались бы от опытных значений.

Согласно методу наименьших квадратов наилучшими коэффициентами считаются те, для которых сумма квадратов отклонений найденной эмпирической функции от заданных значений функции будет минимальной.

Используя необходимое условие экстремума функции нескольких переменных - равенство нулю частных производных, находят набор коэффициентов, которые доставляют минимум функции, определяемой формулой (2) и получают нормальную систему для определения коэффициентов:

Таким образом, нахождение коэффициентов сводится к решению системы (3).

Вид системы (3) зависит от того, из какого класса эмпирических формул мы ищем зависимость (1). В случае линейной зависимости система (3) примет вид:

В случае квадратичной зависимости система (3) примет вид:

В ряде случаев в качестве эмпирической формулы берут функцию в которую неопределенные коэффициенты входят нелинейно. При этом иногда задачу удается линеаризовать т.е. свести к линейной. К числу таких зависимостей относится экспоненциальная зависимость

где a1и a2 неопределенные коэффициенты.

Линеаризация достигается путем логарифмирования равенства (6), после чего получаем соотношение

Обозначим и соответственно через и, тогда зависимость (6) может быть записана в виде, что позволяет применить формулы (4) с заменой a1 на и на.

График восстановленной функциональной зависимости y(x) по результатам измерений (xi, yi), i=1,2,…,n называется кривой регрессии. Для проверки согласия построенной кривой регрессии с результатами эксперимента обычно вводят следующие числовые характеристики: коэффициент корреляции (линейная зависимость), корреляционное отношение и коэффициент детерминированности.

Коэффициент корреляции является мерой линейной связи между зависимыми случайными величинами: он показывает, насколько хорошо в среднем может быть представлена одна из величин в виде линейной функции от другой.

Коэффициент корреляции вычисляется по формуле:

где - среднее арифметическое значение соответственно по x, y.

Коэффициент корреляции между случайными величинами по абсолютной величине не превосходит 1. Чем ближе к 1, тем теснее линейная связь между x и y.

В случае нелинейной корреляционной связи условные средние значения располагаются около кривой линии. В этом случае в качестве характеристики силы связи рекомендуется использовать корреляционное отношение, интерпретация которого не зависит от вида исследуемой зависимости.

Корреляционное отношение вычисляется по формуле:

где а числитель характеризует рассеяние условных средних около безусловного среднего.

Всегда. Равенство = соответствует случайным некоррелированным величинам; = тогда и только тогда, когда имеется точная функциональная связь между x и y. В случае линейной зависимости y от x корреляционное отношение совпадает с квадратом коэффициента корреляции. Величина используется в качестве индикатора отклонения регрессии от линейной.

Корреляционное отношение является мерой корреляционной связи y c x в какой угодно форме, но не может дать представления о степени приближенности эмпирических данных к специальной форме. Чтобы выяснить насколько точно построен5ная кривая отражает эмпирические данные вводится еще одна характеристика - коэффициент детерминированности.


где Sост = - остаточная сумма квадратов, характеризующая отклонение экспериментальных данных от теоретических.полн - полная сумма квадратов, где среднее значение yi.

Регрессионная сумма квадратов, характеризующая разброс данных.

Чем меньше остаточная сумма квадратов по сравнению с общей суммой квадратов, тем больше значение коэффициента детерминированности r2, который показывает, насколько хорошо уравнение, полученное с помощью регрессионного анализа, объясняет взаимосвязи между переменными. Если он равен 1, то имеет место полная корреляция с моделью, т.е. нет различия между фактическим и оценочным значениями y. В противоположном случае, если коэффициент детерминированности равен 0, то уравнение регрессии неудачно для предсказания значений y.

Коэффициент детерминированности всегда не превосходит корреляционное отношение. В случае когда выполняется равенство то можно считать, что построенная эмпирическая формула наиболее точно отражает эмпирические данные.

3. Расчёт с помощью таблиц, выполненных средствами Microsoft Excel

Для проведения расчётов данные целесообразно расположить в виде таблицы 2, используя средства табличного процессора Microsoft Excel.

Таблица 2

ABCDEFGHI10,281,050,07840,2940,0219520,0061470,082320,048790,01366120,872,870,75692,49690,6585030,5728982,1723031,0543120,91725131,656,432,722510,60954,4921257,41200617,505681,8609753,07060841,998,963,960117,83047,88059915,6823935,48252,192774,36361352,088,084,326416,80648,99891218,7177434,957312,0893924,34593562,349,115,475621,317412,812929,982249,882722,2093735,16993272,6516,867,022544,67918,6096349,31551118,39942,8249447,48610182,7717,977,672949,776921,2539358,87339137,8822,8887048,00170992,8318,998,008953,741722,6651964,14248152,0892,9439138,331272103,0623,759,363672,67528,6526287,677222,38553,1675839,692803113,3329,4311,088998,001936,92604122,9637326,34633,38201511,26211123,4137,4511,6281127,704539,65182135,2127435,47233,62300712,35445133,5542,4412,6025150,66244,73888158,823534,85013,74809113,30572143,8556,9414,8225219,21957,06663219,7065843,99324,04199815,56169154,0175,0816,0801301,070864,4812258,56961207,2944,31855417,3174164,2386,4417,8929365,641275,68697320,15591546,6624,45945118,86348174,8390,8523,3289438,8055112,6786544,23762119,4314,5092121,77948184,9299,0624,2064487,3752119,0955585,94982397,8864,59572622,61097195,14120,4526,4196619,113135,7967697,99533182,2414,79123524,62695205,23139,6527,3529730,3695143,0557748,18113819,8324,93913925,8317215,55187,5430,80251040,847170,9539948,7945776,7015,23399229,04866226,32200,4539,94241266,844252,4361595,3958006,4545,30056533,49957236,66212,9744,35561418,38295,40831967,4199446,4125,36115135,70527247,13275,7450,83691966,026362,46712584,3914017,775,61945840,06674257,25321,4352,56252330,368381,07812762,81616895,165,7727841,852652695,932089,99453,310511850,652417,56813982,9971327,3490,97713415,0797С У М М ЫПоясним, как таблица 2 составляется.

Шаг 1.В ячейки А1:A25 заносим значения xi.

Шаг 2.В ячейки B1:B25 заносим значения уi.

Шаг 3.В ячейку С1 вводим формулу=А1^2.

Шаг 4.В ячейки С1:С25 эта формула копируется.

Шаг 5.В ячейку D1 вводим формулу=А1*B1.

Шаг 6.В ячейки D1:D25 эта формула копируется.

Шаг 7.В ячейку F1 вводим формулу=А1^4.

Шаг 8.В ячейки F1:F25 эта формула копируется.

Шаг 9.В ячейку G1 вводим формулу=А1^2*B1.

Шаг 10.В ячейки G1:G25 эта формула копируется.

Шаг 11.В ячейку H1 вводим формулу = LN(B1).

Шаг 12.В ячейки H1:H25 эта формула копируется.

Шаг 13.В ячейку I1 вводим формулу=А1*LN(B1).

Шаг 14.В ячейки I1:I25 эта формула копируется.

Последующие шаги делаем с помощью автосуммирования S.

Шаг 15. В ячейку А26 вводим формулу = СУММ(А1:А25).

Шаг 16. В ячейку В26 вводим формулу = СУММ(В1:В25).

Шаг 17. В ячейку С26 вводим формулу = СУММ(С1:С25).

Шаг 18. В ячейку D26 вводим формулу = СУММ(D1:D25).

Шаг 19. В ячейку E26 вводим формулу = СУММ(E1:E25).

Шаг 20. В ячейку F26 вводим формулу = СУММ(F1:F25).

Шаг 21. В ячейку G26 вводим формулу = СУММ(G1:G25).

Шаг 22. В ячейку H26 вводим формулу = СУММ(H1:H25).

Шаг 23. В ячейку I26 вводим формулу = СУММ(I1:I25).

Аппроксимируем функцию линейной функцией. Для определения коэффициентов и воспользуемся системой (4). Используя итоговые суммы таблицы 2, расположенные в ячейках A26, B26, C26 и D26, запишем систему (4) в виде

решив которую, получим и.

Систему решали методом Крамера. Суть которого состоит в следующем. Рассмотрим систему n алгебраических линейных уравнений с n неизвестными:

Определителем системы называется определитель матрицы системы:

Обозначим - определитель, который получится из определителя системы Δ заменой j-го столбца на столбец

Таким образом, линейная аппроксимация имеет вид

Решение системы (11) проводим, пользуясь средствами Microsoft Excel. Результаты представлены в таблице 3.

Таблица 3

ABCDE282595,932089,992995,93453,310511850,653031Обратная матрица320,212802-0,04503a1=-88,9208133-0,045030,011736a2=44,95997

В таблице 3 в ячейках A32:B33 записана формула {=МОБР(А28:В29)}.

В ячейках Е32:Е33 записана формула {=МУМНОЖ(А32:В33),(C28:С29)}.

Далее аппроксимируем функцию квадратичной функцией. Для определения коэффициентов a1, a2 и a3 воспользуемся системой (5). Используя итоговые суммы таблицы 2, расположенные в ячейках A26, B26, C26 , D26, E26, F26, G26 запишем систему (5) в виде

решив которую, получим a1=10,663624, и

Таким образом, квадратичная аппроксимация имеет вид

Решение системы (16) проводим, пользуясь средствами Microsoft Excel. Результаты представлены в таблице 4.

Таблица 4

ABCDEF362595,93453,31052089,993795,93453,31052417,56811850,65538453,31052417,56813982,9971327,3453940Обратная матрица410,632687-0,314390,033846a1=10,66362442-0,314390,184534-0,021712a2=-18,924512430,033846-0,021710,002728a3=8,0272305

В таблице 4 в ячейках А41:С43 записана формула {=МОБР(А36:С38)}.

В ячейках F41:F43 записана формула {=МУМНОЖ(А41:C43),(D36:D38)}.

Теперь аппроксимируем функцию экспоненциальной функцией. Для определения коэффициентов и прологарифмируем значения и, используя итоговые суммы таблицы 2, расположенные в ячейках A26, C26, H26 и I26, получим систему

Решив систему (18), получим и.

После потенцирования получим.

Таким образом, экспоненциальная аппроксимация имеет вид

Решение системы (18) проводим, пользуясь средствами Microsoft Excel. Результаты представлены в таблице 5.

Таблица 5

BCDEF462595,9390,977134795,93453,3105415,07974849Обратная матрицас=0,667679 500,212802-0,04503а2=0,774368 51-0,045030,011736а1=1,949707

В ячейках А50:В51 записана формула {=МОБР(А46:В47)}.

В ячейке Е51 записана формула=EXP(E49).

Вычислим среднее арифметическое и по формулам:

Результаты расчета и средствами Microsoft Excel представлены в таблице 6.

Таблица 6

BC54Xср=3,837255Yср=83,5996

В ячейке В54 записана формула=А26/25.

В ячейке В55 записана формула=В26/25

Таблица 7

ABJKLMNO10,281,05293,645412,653676814,4365987,97624,444081,88177520,872,87239,54098,8042766517,2682774,7226,7334610,91071731,656,43168,78534,7838445955,147448,035726,395820,32073741,998,96137,87433,4121485571,0770,7358817,368220,02062652,088,08132,7033,0877525703,2112,138714,2039422,82478262,349,11111,52582,2416085548,70151,488211,4985887,99584272,6516,8679,233251,4094444454,174178,5730,000622,83382582,7717,9770,039911,1389164307,244311,46313,4777091,73059692,8318,9965,074791,0144524174,4373,4915,7914362,382273103,0623,7546,515110,604043581,975620,344117,375498,423061113,3329,4327,474820,2572522934,346983,819852,2462113,94466123,4137,4519,715110,18252129,786725,90914,090409102,2541133,5542,4411,821040,0824841694,113797,89844,861044143,3219143,8556,94-0,341240,000164710,7343741,750,023142342,3946154,0175,08-1,472190,0298672,58358265,3212126,0007996,9257164,2386,441,1157090,1542928,067872219,6288148,75781214,778174,8390,857,1981970,98565252,56831397,703245,695876,64891184,9299,0616,740521,172456239,0241103,718163,9776121,868195,14120,4548,00871,6972881357,952471,908425,17881258,6007205,23139,6578,0671,9398923141,64743,1629470,45155769,9408215,55187,54178,02912,93368410803,61725,38421200,5291951,06226,32200,45290,11626,16429613654,0227,28786126,28273577,409236,66212,97365,18687,968216736,76,038755767,788515795,87247,13275,74632,679910,8425336917,931944,47565,1469344766,92257,25321,43811,667611,647256563,37121,842677,966445516,82695,932089,93830,94585,207919964427404,823786,286115678,1С у м м ыОстаточные суммыXYлинейн.квадр.экспон.

Поясним как она составляется.

Ячейки А1:А26 и В1:В26 уже заполнены.

Шаг 1.В ячейку J1 вводим формулу = (А1-$B$54)*(B1-$B$55).

Шаг 2.В ячейки J2:J25 эта формула копируется.

Шаг 3.В ячейку K1 вводим формулу = (А1-$B$54)^2.

Шаг 4.В ячейки k2:K25 эта формула копируется.

Шаг 5.В ячейку L1 вводим формулу = (B1-$B$55)^2.

Шаг 6.В ячейки L2:L25 эта формула копируется.

Шаг 7.В ячейку M1 вводим формулу = ($E$32+$E$33*A1-B1)^2.

Шаг 8.В ячейки M2:M25 эта формула копируется.

Шаг 9.В ячейку N1 вводим формулу = ($F$41+$F$42*A1+$F$43*A1^2-B1)^2.

Шаг 10.В ячейки N2:N25 эта формула копируется.

Шаг 11.В ячейку O1 вводим формулу = ($E$51*EXP($E$50*A1)-B1)^2.

Шаг 12.В ячейки O2:O25 эта формула копируется.

Последующие шаги делаем с помощью авто суммирования S.

Шаг 13.В ячейку J26 вводим формулу = CУММ(J1:J25).

Шаг 14.В ячейку K26 вводим формулу = CУММ(K1:K25).

Шаг 15.В ячейку L26 вводим формулу = CУММ(L1:L25).

Шаг 16.В ячейку M26 вводим формулу = CУММ(M1:M25).

Шаг 17.В ячейку N26 вводим формулу = CУММ(N1:N25).

Шаг 18.В ячейку O26 вводим формулу = CУММ(O1:O25).

Теперь проведем расчеты коэффициента корреляции по формуле (8) (только для линейной аппроксимации) и коэффициента детерминированности по формуле (10). Результаты расчетов средствами Microsoft Excel представлены в таблице 8.

Таблица 8

AB57Коэффициент корреляции0,92883358Коэффициент детерминированности (линейная аппроксимация)0,8627325960Коэффициент детерминированности (квадратичная аппроксимация)0,9810356162Коэффициент детерминированности (экспоненциальная аппроксимация)0,42057863В ячейке E57 записана формула=J26/(K26*L26)^(1/2).

В ячейке E59 записана формула=1-M26/L26.

В ячейке E61 записана формула=1-N26/L26.

В ячейке E63 записана формула=1-O26/L26.

Анализ результатов расчетов показывает, что квадратичная аппроксимация наилучшим образом описывает экспериментальные данные.

Схема алгоритма

Рис. 1. Схема алгоритма для программы расчёта.

5. Расчет в программе MathCad

Линейная регрессия

·line (x, y) - вектор из двух элементов (b, a) коэффициентов линейной регрессии b+ax;

·x - вектор действительных данных аргумента;

·y - вектор действительных данных значений того же размера.

Рисунок 2.

Полиномиальная регрессия означает приближение данных (х1, у1) полиномом k-й степени При k=i полином является прямой линией, при k=2 - параболой, при k=3 - кубической параболой и т.д. Как правило, на практике применяются k<5.

·regress (x,y,k) - вектор коэффициентов для построения полиномиальной регрессии данных;

·interp (s,x,y,t) - результат полиномиальной регрессии;

·s=regress(x,y,k);

·x - вектор действительных данных аргумента, элементы которого расположены в порядке возрастания;

·y - вектор действительных данных значений того же размера;

·k - степень полинома регрессии (целое положительное число);

·t - значение аргумента полинома регрессии.

Рисунок 3

Кроме рассмотренных, в Mathcad встроено еще несколько видов трехпараметрической регрессии, их реализация несколько отличается от приведенных выше вариантов регрессии тем, что для них, помимо массива данных, требуется задать некоторые начальные значения коэффициентов a, b, c. Используйте соответствующий вид регрессии, если хорошо представляете себе, какой зависимостью описывается ваш массив данных. Когда тип регрессии плохо отражает последовательность данных, то ее результат часто бывает неудовлетворительным и даже сильно различающимся в зависимости от выбора начальных значений. Каждая из функций выдает вектор уточненных параметров a, b, c.

Результаты, полученные с помощью функции ЛИНЕЙН

Рассмотрим назначение функции ЛИНЕЙН.

Эта функция использует метод наименьших квадратов, чтобы вычислить прямую линию, которая наилучшим образом аппроксимирует имеющиеся данные.

Функция возвращает массив, который описывает полученную прямую. Уравнение для прямой линии имеет следующий вид:

M1x1 + m2x2 + ... + b или y = mx + b,

алгоритм табличный microsoft программный

Для получения результатов необходимо создать табличную формулу, которая будет занимать 5 строк и 2 столбца. Этот интервал может располагаться в произвольном месте на рабочем листе. В этот интервал требуется ввести функцию ЛИНЕЙН.

В результате должны заполниться все ячейки интервала А65:В69 (как показано в таблице 9).

Таблица 9.

АВ6544,95997-88,9208663,73946615,92346670,86273234,5183168144,55492369172239,227404,82

Поясним назначение некоторых величин, расположенных в таблице 9.

Величины, расположенные в ячейках А65 и В65 характеризуют соответственно наклон и сдвиг.- коэффициент детерминированности.- F-наблюдаемое значение.- число степеней свободы.- регрессионная сумма квадратов.- остаточная сумма квадратов.

Представление результатов в виде графиков

Рис. 4. График линейной аппроксимации

Рис. 5. График квадратичной аппроксимации

Рис. 6. График экспоненциальной аппроксимации

Выводы

Сделаем выводы по результатам полученных данных.

Анализ результатов расчетов показывает, что квадратичная аппроксимация наилучшим образом описывает экспериментальные данные, т.к. линия тренда для неё наиболее точно отражает поведение функции на данном участке.

Сравнивая результаты, полученные при помощи функции ЛИНЕЙН, видим, что они полностью совпадают с вычислениями, проведенными выше. Это указывает на то, что вычисления верны.

Результаты, полученные с помощью программы MathCad, полностью совпадают со значениями приведенными выше. Это говорит о верности вычислений.

Список используемой литературы

  1. Б.П. Демидович, И.А. Марон. Основы вычислительной математики. М: Государственное издательство физико-математической литературы.
  2. Информатика: Учебник под ред. проф. Н.В. Макаровой. М: Финансы и статистика, 2007.
  3. Информатика: Практикум по технологии работы на компьютере под ред. проф. Н.В. Макаровой. М: Финансы и статистика, 2010.
  4. В.Б. Комягин. Программирование в Excel на языке Visual Basic. М: Радио и связь, 2007.
  5. Н. Николь, Р. Альбрехт. Excel. Электронные таблицы. М: Изд. «ЭКОМ», 2008.
  6. Методические указания к выполнению курсовой работы по информатике (для студентов заочного отделения всех специальностей), под ред. Журова Г. Н., СПбГГИ(ТУ), 2011.