Видеоурок 2: Типы химических связей

Лекция: Ковалентная химическая связь, её разновидности и механизмы образования. Ионная связь. Металлическая связь. Водородная связь

Образование химической связи


Атомы химических элементов практически всегда образуют соединения. Исключением являются благородные газы, принадлежащие главной подгруппе VIII группы Периодической таблицы. Почему они инертны? Их низкая активность объясняется заполненностью орбиталей внешнего энергетического уровня. Им просто не нужно отдавать свои или принимать чужие электроны.

Значит, соединения атомов различных элементов возможны только при наличии свободных орбиталей, с содержащимися в них валентными электронами на внешнем слое атома. Поведение химического элемента в реакциях зависит от валентных электронов, чем их меньше, тем активнее элемент отдаёт их и, наоборот, чем больше валентных электронов, тем неохотнее элемент разлучается с ними.


Запомните! Если элемент легко отдает свои электроны, то он проявляет восстановительные свойства, ну а если тяжело, то окислительные. Мы еще поговорим об этих свойствах химических элементов на одном из последующих уроков. А сейчас узнаем, что такое химическая связь и как она образуется.


Итак, чаще всего вещества состоят из групп атомов, насчитывающих несколько единиц или даже тысяч. А удерживает их особая сила - химическая связь.

Химическая связь – это взаимодействие, обеспечивающее связь между атомами, преобразуя их в сложные группы.

В основе химических связей лежат определенные электростатические силы притяжения и отталкивания, обуславливающие взаимодействие положительно заряженных ядер и отрицательно заряженных электронов. Электрон, двигаясь между ядрами, притягивает их к себе, что приводит к понижению полной энергии. Это и есть необходимое условие для того, чтобы атомы начали связываться между собой.

При образовании какой - либо химической связи, каждый отдельный атом выделяет энергию, необходимую для разъединения частиц на расстояние, при котором их взаимодействие стало бы невозможным. Эта энергия называется энергией связи. Валентные электроны имеют наименьшую энергию связи.


В процессе химической связи, отдельный атом стремится получить свою электронную конфигурацию близлежащих по таблице благородных газов. То есть атому необходимо приобрести на внешнем электронном слое 8 или 2 электрона и стать устойчивым и прочным.


Рассмотрим следующие типы связи:

    ковалентную,

  • металлическую,

    водородную.

Ковалентная связь


Ковалентная связь – химическая связь, образованная перекрытием парой электронов, принадлежащих двум атомам.

Схематически этот процесс можно изобразить так: A· + ·В → А: В. В результате энергетический уровень заполняется.

На рисунке изображено как происходит перекрытие s- и р-орбиталей, а также уже смешанных орбиталей, которые называются гибридными:



Существуют два пути образования ковалентной связи. Перекрытием двух орбиталей атомов – соседей, имеющих по одному свободному электрону, либо перекрытием свободной орбитали атома с орбиталью другого атома, имеющего электронную пару. Второй путь называется донорно – акцепторным механизмом.

Донор – это определенный атом, который предоставляет неподелённую электронную пару.

Акцептор – это атом, который содержит в себе свободную орбиталь.

Способность атомов притягивать электроны у разных элементов различна. Она обусловлена электроотрицательностью, о которой вы подробно узнаете на следующем уроке. Если электроотрицательность соединяющихся атомов не слишком различна возникает полярная ковалентная связь. При одинаковой электроотрицательности, если соединяются атомы одного элемента – неметалла, образующаяся связь называется ковалентной неполярной. Ну, а если электроотрицательность различается сильно, то возникает ионная связь.


Рассмотрим пример соединения атомов водорода и фтора. Для начала вспомним их электронные конфигурации: Н - 1s 1 ​
F - ​​​1s 1 ​ 2s 2 ​​​​2p 5 ​

1. Расположение электронов по орбиталям выглядит так:
​​​

Увидим на рисунке как s-электрон водорода перекроется с p-электроном фтора:

2. После чего орбитали фтора будут выглядеть так:

Если орбитали перекрываются вдоль линии связи, возникает σ-связь (сигма-связь):

Дополнительное перекрытие орбиталей перпендикулярно линии связи приводит к возникновению π-связь (пи-связи):

Межъядерное расстояние – длина связи, уменьшается с образованием кратных связей (двойных или тройных), которые образуются сочетанием σ + π и тройных σ + π + π. А σ связь называется одинарной.

Гибридизация бывает следующих типов:

Ионная связь


Ионной связью считается предельный случай ковалентной полярной связи. В ковалентной – полярной связи общая электронная пара всегда перемещается к одному из пары атомов. В ионной связи электронная пара полностью принадлежит одному из атомов. Атом, который отдает электрон, впоследствии получает положительный заряд. После чего он становится катионом. Атом, который забирает электроны, приобретает отрицательный заряд, вследствие чего становится анионом. Из этого следует, что ионная связь - такая связь, которая образуется за счет электростатического притяжения, которое происходит между катионами и анионами.

Металлическая связь

Данный тип связи образуется в металлах. У атомов всех металлических элементов на внешнем электронном слое содержатся электроны, которые имеют низкую энергию, связывающую с ядром атома. Энергетически выгодный процесс для металлов - потеря внешних электронов. Из – за достаточно слабого взаимодействия с ядром, электроны, содержащиеся в металлах, достаточно подвижны. В каждом кристалле металла происходит данный процесс: Ме 0 - ne− = Mе n+ . В данной формуле Ме 0 является нейтральным атомом металла. n+ – это катион этого же металла.


Водородная связь


Если атом водорода в любом химическом веществе взаимосвязан с элементом, который имеет высокую электроотрицательность, например азот, кислород или фтор, для данного вещества характерна водородная связь. Атом водорода прочно взаимосвязан с атомом, имеющим электроотрицательный характер. Поэтому общая электронная пара будет смещена от водорода к электроотрицательному элементу.

На атоме водорода образуется положительный заряд, а на атоме электроотрицательного элемента - отрицательный. Благодаря наличию данных зарядов, становится возможным электростатическое притяжение, которое происходит между положительно заряженным атомом водорода одной молекулы и электроотрицательным атомом другой.

Водородной связью так же объясняется достаточно высокая температура плавления воды. Прочные водородные связи образуются в следующих веществах: фтороводород, аммиак, кислородсодержащие кислоты.




Ковалентная связь осуществляется за счёт обобществления электронов, принадлежащих обоим участвующим во взаимодействии атомам. Электроотрицательности неметаллов достаточно велики, поэтому передачи электронов не происходит.

Электроны, находящиеся на перекрывающихся электронных орбиталях, поступают в общее пользование. При этом создаётся ситуация, при которой внешние электронные уровни атомов оказываются заполненными, то есть образуется 8-ми или 2-х электронная внешняя оболочка.

Вконтакте

Одноклассники

Состояние, при котором электронная оболочка заполнена полностью, характеризуется наименьшей энергией, а соответственно, и максимальной устойчивостью.

Механизмов образования два:

  1. донорно-акцепторный;
  2. обменный.

В первом случае один из атомов предоставляет свою пару электронов, а второй - свободную электронную орбиталь.

Во втором - в общую пару приходит по одному электрону от каждого участника взаимодействия.

В зависимости от того, к какому типу относятся - атомному или молекулярному, соединения с подобным видом связи могут значительно различаться по физико-химическим характеристикам.

Молекулярные вещества чаще всего газы, жидкость или твёрдые вещества с низкими температурами плавления и кипения, неэлектропроводные, обладающие малой прочностью. К ним можно отнести: водород (H 2), кислород (O 2), азот (N 2), хлор (Cl 2), бром (Br 2), ромбическую серу (S 8), белый фосфор (P 4) и другие простые вещества; диоксид углерода (CO 2), диоксид серы (SO 2), оксид азота V (N 2 O 5), воду (H 2 O), хлороводород (HCl), фтороводород (HF), аммиак (NH 3), метан (CH 4), этиловый спирт (C 2 H 5 OH), органические полимеры и другие.

Вещества атомные существуют в виде прочных кристаллов, имеющих высокие температуры кипения и плавления, не растворимы в воде и прочих растворителях, многие не проводят электрический ток. Как пример можно привести алмаз, который обладает исключительной прочностью. Это объясняется тем, что алмаз представляет собой кристалл, состоящий из атомов углерода, соединённых ковалентными связями. В алмазе нет отдельных молекул. Также атомным строением обладают такие вещества, как графит, кремний (Si), диоксид кремния (SiO 2), карбид кремния (SiC) и другие.

Ковалентные связи могут быть не только одинарными (как в молекуле хлора Cl2), но также двойные, как в молекуле кислорода О2, или тройные, как, например, в молекуле азота N2. При этом тройные имеют большую энергию и более прочны, чем двойные и одинарные.

Ковалентная связь может быть образована как между двумя атомами одного элемента (неполярная), так и между атомами различных химических элементов (полярная).

Указать формулу соединения с ковалентной полярной связью не представляет труда, если сравнить значения электроотрицательностей, входящих в состав молекул атомов. Отсутствие разницы в электроотрицательности определит неполярность. Если же разница есть, то молекула будет полярна.

Не пропустите: механизм образования , конкретные примеры.

Ковалентная неполярная химическая связь

Характерна для простых веществ неметаллов . Электроны принадлежат атомам в равной степени, и смещения электронной плотности не происходит.

Примером могут служить следующие молекулы:

H2, O2, О3, N2, F2, Cl2.

Исключением являются инертные газы . Их внешний энергетический уровень заполнен полностью, и образование молекул им энергетически не выгодно, в связи с чем они существуют в виде отдельных атомов.

Также примером веществ с неполярной ковалентной связью будет, например, РН3. Несмотря на то, что вещество состоит из различных элементов, значения электроотрицательностей элементов фактически не различаются, а значит, смещения электронной пары происходить не будет.

Ковалентная полярная химическая связь

Рассматривая ковалентную полярную связь, примеров можно привести множество: HCl, H2O, H2S, NH3, CH4, CO2, SO3, CCl4, SiO2, СО.

образуется между атомами неметаллов с различной электроотрицательностью. При этом ядро элемента с большей электроотрицательностью притягивает общие электроны ближе к себе.

Схема образования ковалентной полярной связи

В зависимости от механизма образования общими могут становиться электроны одного из атомов или обоих .

На картинке наглядно представлено взаимодействие в молекуле соляной кислоты.

Пара электронов принадлежит и одному атому, и второму, у обоих, таким образом, внешние уровни заполнены. Но более электроотрицательный хлор притягивает пару электронов чуть ближе к себе (при этом она остаётся общей). Разница в электроотрицательности недостаточно большая, чтобы пара электронов перешла к одному из атомов полностью. В результате возникает частичный отрицательный заряд у хлора и частичный положительный у водорода. Молекула HCl является полярной молекулой.

Физико-химические свойства связи

Связь можно охарактеризовать следующими свойствами : направленность, полярность, поляризуемость и насыщаемость.

Идея об образовании химической связи с помощью пары электронов, принадлежащих обоим соединяющимся атомам, была высказана в 1916г американским физико-химиком Дж. Льюисом.

Ковалентная связь существует между атомами как в молекулах, так и в кристаллах. Она возникает как между одинаковыми атомами (например, в молекулах Н 2 , Cl 2 , О 2 , в кристалле алмаза), так и между разными атомами (например, в молекулах Н 2 О и NН 3 , в кристаллах SiC). Почти все связи в молекулах органических соединений являются ковалентными (С-С, С-Н, С-N, и др.).

Различают два механизма образования ковалентной связи:

1) обменный;

2) донорно-акцепторный.

Обменный механизм образования ковалентной связи заключается в том, что каждый из соединяющихся атомов предоставляет на образование общей электронной пары (связи) по одному неспаренному электрону. Электроны взаимодействующих атомов должны при этом иметь противоположные спины.

Рассмотрим для примера образование ковалентной связи в молекуле водорода . При сближении атомов водорода происходит проникновение их электронных облаков друг в друга, которое называется перекрыванием электронных облаков (рис. 3.2), электронная плотность между ядрами возрастает. Ядра притягиваются друг к другу. Вследствие этого снижается энергия системы. При очень сильном сближении атомов возрастает отталкивание ядер. Поэтому имеется оптимальное расстояние между ядрами (длина связи l), при котором система имеет минимальную энергию. При таком состоянии выделяется энергия, называемая энергией связи Е св.

Рис. 3.2. Схема перекрывания электронных облаков при образовании молекулы водорода

Схематично образование молекулы водорода из атомов можно представить следующим образом (точка означает электрон , черта - пару электронов):

Н + Н→Н: Н или Н + Н→Н - Н.

В общем виде для молекул АВ других веществ:

А + В = А: В.

Донорно-акцепторный механизм образования ковалентной связи заключается в том, что одна частица - донор - представляет на образование связи электронную пару, а вторая - акцептор - свободную орбиталь:

А: +  В = А: В.

донор акцептор

Рассмотрим механизмы образования химических связей в молекуле аммиака и ионе аммония .

1. Образование

Атом азота имеет на внешнем энергетическом уровне два спаренных и три неспаренных электрона:

Атом водорода на s - подуровне имеет один неспаренный электрон.


В молекуле аммиака неспаренные 2р - электроны атома азота образуют три электронные пары с электронами 3-х атомов водорода:

.

В молекуле NH 3 образованы 3 ковалентных связи по обменному механизму.

2. Образование комплексного иона - иона аммония.

NH 3 + HCl = NH 4 Cl или NH 3 + H + = NH 4 +

У атома азота остается неподелённая пара электронов , т. е. два электрона с антипараллельными спинами на одной атомной орбитали. Атомная орбиталь иона водорода не содержит электронов (вакантная орбиталь). При сближении молекулы аммиака и иона водорода происходит взаимодействие неподеленной пары электронов атома азота и вакантной орбитали иона водорода. Неподеленная пара электронов становится общей для атомов азота и водорода, возникает химическая связь по донорно - акцепторному механизму. Атом азота молекулы аммиака является донором, а ион водорода - акцептором:

.

Следует отметить, что в ионе NH 4 + все четыре связи равноценны и неразличимы, следовательно, в ионе заряд делокализован (рассредоточен) по всему комплексу.

Рассмотренные примеры показывают, что способность атома образовывать ковалентные связи обусловливается не только одноэлектронными, но и 2-электронными облаками или наличием свободных орбиталей.

По донорно-акцепторному механизму образуются связи в комплексных соединениях: - ; 2+ ; 2- и т. д.

Ковалентная связь обладает следующими свойствами:

- насыщаемость;

- направленность;

- полярность и поляризуемость.

Рис. 2.1. Образование молекул из атомов сопровождается перераспределением электронов валентных орбиталей и приводит к выигрышу в энергии, так как энергия молекул оказывается меньше энергии невзаимодействующих атомов. На рисунке представлена схема образования неполярной ковалентной химической связи между атомами водорода.

§2 Химическая связь

В обычных условиях молекулярное состояние устойчивее, чем атомное (рис.2.1).Образование молекул из атомов сопровождается перераспределением электронов валентных орбиталей и приводит к выигрышу в энергии, так как энергия молекул оказывается меньше энергии невзаимодействующих атомов (приложение 3). Силы, удерживающие атомы в молекулах, получили обобщенное названиехимической связи .

Химическая связь между атомами осуществляется валентными электронами и имеет электрическую природу . При этом различают четыре основных типа химической связи:ковалентную ,ионную, металлическую иводородную .

1 Ковалентная связь

Химическая связь, осуществляемая электронными парами, называется атомной, или ковалентной . Соединения с ковалентными связями называются атомными, или ковалентными .

При возникновении ковалентной связи происходит сопровождающееся выделением энергии перекрытие электронных облаков взаимодействующих атомов (рис.2.1). При этом между положительно заряженными атомными ядрами возникает облако с повышенной плотностью отрицательного заряда. Благодаря действию кулоновских сил притяжения между разноименными зарядами увеличение плотности отрицательного заряда благоприятствует сближению ядер.

Ковалентная связь образуется за счет непарных электронов внешних оболочек атомов . При этом электроны с противоположными спинами образуютэлектронную пару (рис.2.2), общую для взаимодействующих атомов. Если между атомами возникла одна ковалентная связь (одна общая электронная пара), то она называется одинарной, две- двойной и т.д.

Мерой прочности химической связи служит энергия E св, затрачиваемая на разрушение связи (выигрыш в энергии при образовании соединения из отдельных атомов). Обычно эту энергию измеряют в расчете на 1 мольвещества и выражают в килоджоулях на моль (кДж∙моль –1). Энергия одинарной ковалентной связи лежит в пределах 200–2000 кДжмоль –1 .

Рис. 2.2. Ковалентная связь – наиболее общий вид химической связи, возникающей за счет обобществления электронной пары посредством обменного механизма (а) , когда каждый из взаимодействующих атомов поставляет по одному электрону, или посредством донорно-акцепторного механизма (б) , когда электронная пара передается в общее пользование одним атомом (донором) другому атому (акцептору).

Ковалентная связь обладает свойствами насыщаемости и направленности . Под насыщаемостью ковалентной связи понимается способность атомов образовывать с соседями ограниченное число связей, определяемое числом их неспаренных ва­лентных электронов. Направленность ковалентной связи отражает тот факт, что силы,удерживающие атомы друг возле друга, направлены вдоль прямой, соединяющей атомные ядра. Кроме того, ковалентная связь может быть полярной или неполярной .

В случае неполярной ковалентной связи электронное облако, образованное общей парой электронов, распределяется в пространстве симметрично относительно ядер обоих атомов. Неполярная ковалентная связь образуется между атомами простых веществ, например, между одинаковыми атомами газов, образующих двухатомные молекулы (О 2 , Н 2 , N 2 ,Cl 2 и т.д.).

В случае полярной ковалентной связи электронное облако связи смещено к одному из атомов. Образование полярной ковалентной связи между атомами характерно для сложных веществ. Примером могут служить молекулы летучих неорганических соединений: HCl, H 2 O, NH 3 и др.

Степень смещения общего электронного облака к одному из атомов при образовании ковалентной связи (степень полярности связи ) определяется, главным образом, зарядом атомных ядер и радиусом взаимодействующих атомов .

Чем больше заряд атомного ядра, тем сильнее оно притягивает к себе облако электронов. В то же время чем больше радиус атома, тем слабее внешние электроны удерживаются вблизи атомного ядра. Совокупное действие двух этих факторов и выражается в различной способности разных атомов «оттягивать» к себе облако ковалентной связи.

Способность атома в молекуле притягивать к себе электроны получила название электроотрицательности . Таким образом, электроотрицательность характеризует способность атома к поляризации ковалентной связи:чем больше электроотрицательность атома, тем сильнее смещено к нему электронное облако ковалентной связи .

Для количественной оценки электроотрицательности предложен ряд методов. При этом наиболее ясный физический смысл имеет метод, предложенный американским химиком Робертом С. Малликеном, который определил электроотрицательность атома как полусумму его энергииE e сродства к электрону и энергииE i ионизации атома:

. (2.1)

Энергией ионизации атома называется та энергия, которую нужно затратить, чтобы «оторвать» от него электрон и удалить его на бесконечное расстояние. Энергию ионизации определяют при помощи фотоионизации атомов или путем бомбардировки атомов электронами, ускоренными в электрическом поле. То наименьшее значение энергии фотонов или электронов, которое становится достаточным для ионизации атомов, и называют их энергией ионизацииE i . Обычно эта энергия выражается в электрон-вольтах (эВ): 1 эВ = 1,610 –19 Дж.

Охотнее всего отдают внешние электроны атомы металлов , которые содержат на внешней оболочке небольшое число непарных электронов (1, 2 или 3). Эти атомы обладают наименьшей энергией ионизации. Таким образом, величина энергии ионизации может служить мерой большей или меньшей «металличности» элемента: чем меньше энергия ионизации, тем сильнее должны быть выраженыметаллические свойства элемента.

В одной и той же подгруппе периодической системы элементов Д.И.Менделе­ева с увеличением порядкового номера элемента его энергия ионизации уменьшается (табл.2.1), что связано с увеличением атомного радиуса (табл.1.2), а, следовательно, с ослаблением связи внешних электронов с ядром. У элементов одного периода энергия ионизации возрастает с увеличением порядкового номера. Это связано с уменьшением атомного радиуса и увеличением заряда ядра.

Энергия E e , которая выделяется при присоединении электрона к свободному атому, называетсясродством к электрону (выражается также в эВ). Выделение (а не поглощение) энергии при присоединении заряженного электрона к некоторым нейтральным атомам объясняется тем, что наиболее устойчивыми в природе являются атомы с заполненными внешними оболочками. Поэтому тем атомам, у которых эти оболочки «немного не заполнены» (т.е. до заполнения не хватает 1, 2 или 3 электронов), энергетически выгодно присоединять к себе электроны, превращаясь в отрицательно заряженные ионы 1 . К таким атомам относятся, например, атомы галогенов (табл.2.1) – элементов седьмой группы (главной подгруппы) периодической системы Д.И.Менделеева. Сродство к электрону атомов металла, как правило, равно нулю или отрицательно, т.е. им энергетически невыгодно присоединение дополнительных электронов, требуется дополнительная энергия, чтобы удержать их внутри атомов. Сродство к электрону атомов неметаллов всегда положительно и тем больше, чем ближе к благородному (инертному) газу расположен неметалл в периодической системе. Это свидетельствует об усилениинеметаллических свойств по мере приближения к концу периода.

Из всего сказанного ясно, что электроотрицательность (2.1) атомов возрастает в направлении слева направо для элементов каждого периода и уменьшается в направлении сверху вниз для элементов одной и той же группы периодической системы Менделеева. Нетрудно, однако, понять, что для характеристики степени полярности ковалентной связи между атомами важным является не абсолютное значение электроотрицательности, а отношение электроотрицательностей атомов, образующих связь. Поэтому на практике пользуются относительными значениями электроотрицательности (табл.2.1),принимая за единицу электроотрицательность лития.

Для характеристики полярности ковалентной химической связи используют разность относительных электроотрицательностей атомов . Обычно связь между атомами А и В считается чисто ковалентной, если | A B |0.5.

При взаимодействии двух атомов одного и того же элемента-неметалла между ними образуется ковалентная химическая связь с помощью общих электронных пар. Эту ковалентную связь называют неполярной, так как общие электронные пары принадлежат обоим атомам в одинаковой степени и ни на одном из них не будет избытка или недостатка отрицательного заряда, который несут электроны.

Однако если ковалентная связь образуется между атомами разных элементов-неметаллов, то картина будет несколько иной. Рассмотрим, например, образование молекулы хлороводорода НС1 из атомов водорода и хлора.

1. Атом водорода имеет на единственном уровне один электрон, и до его завершения ему не хватает ещё одного электрона. У атома хлора на внешнем уровне - семь электронов, и ему также недостает до завершения одного электрона.

2. Атомы водорода и хлора объединяют свои непарные электроны и образуют одну общую электронную пару, т. е. возникает ковалентная связь:

Структурная формула молекулы хлороводорода Н-С1.

3. Так как ковалентная связь образуется между атомами различных элементов-неметаллов, то общая электронная пара будет принадлежать взаимодействующим атомам уже не в равной степени. Для того чтобы качественно определить, какому из этих атомов общая электронная пара будет принадлежать в большей мере, используют понятие электроотрицательностъ.

ЭО можно охарактеризовать как меру неметалличности химических элементов. В порядке уменьшения ЭО химические элементы располагаются в следующий ряд:

Самый электроотрицательный элемент в таблице Д. И. Менделеева - фтор. Это, так сказать, «золотой призёр» электроотрицательности. «Серебряным призёром» является кислород, а «бронзовым» - азот.

Величина ЭО элемента зависит от его положения в таблице Д. И. Менделеева: в каждом периоде она обычно возрастает с увеличением порядкового номера элемента, а в каждой подгруппе - уменьшается.

Пользуясь рядом ЭО, можно определить, куда смещаются общие электронные пары. Они всегда смещены к атомам элемента с большей ЭО. Например, в молекуле хлороводорода НС1 общая электронная пара смещена к атому хлора, так как его ЭО больше, чем у водорода. В результате на атомах образуются частичные заряды , в молекуле возникают два полюса - положительный и отрицательный. Поэтому такую ковалентную связь называют полярной.

Смещение общих электронных пар в случае ковалентной полярной связи иногда обозначают стрелками, а частичный заряд - греческой буквой δ («дельта»): .

В формулах соединений химический знак менее электроотрицательного элемента пишут первым. Так как ковалентная полярная связь является разновидностью ковалентной связи, то алгоритм рассуждений для её схематического изображения такой же, как и для ковалентной неполярной связи (см. § 11), только в этом случае добавится ещё один шаг - четвёртый: по ряду ЭО определим более электроотрицательный элемент и отразим полярность связи в структурной формуле стрелкой и обозначением частичных зарядов.

Например, рассмотрим алгоритм схематического изображения образования связи для соединения OF 2 - фторида кислорода.

1. Кислород - это элемент главной подгруппы VI группы (VIA группы) Периодической системы Д. И. Менделеева. Его атомы имеют по шесть электронов на внешнем электронном слое. Непарных электронов будет: 8-6 = 2.

Фтор - элемент главной подгруппы VII группы (VIIA группы) Периодической системы Д. И. Менделеева. Его атомы содержат по семь электронов на внешнем электронном слое. Непарным является один электрон.

2. Запишем знаки химических элементов с обозначением внешних электронов:

3. Запишем электронную и структурную формулы образовавшихся молекул:

4. По ряду ЭО определим, что общие электронные пары будут смещены от кислорода к фтору, как к более электроотрицательному элементу, т. е. связь будет ковалентной полярной: .

Аналогично образуются молекулы воды:

В действительности молекула воды имеет не линейную, а угловую форму (∠HOH = 104°27"). Строение молекулы воды можно изобразить различными способами (рис. 40).

Рис. 40.
Различные модели молекулы воды

Атом водорода образует только одну ковалентную связь с другими атомами. Поэтому говорят, что водород одновалентен. Атом кислорода связан с другими атомами двумя химическими связями - он двухвалентен. При образовании молекул атомы соединяются таким образом, чтобы все их валентности были задействованы. Понятно, что двухвалентный кислород должен соединиться с двумя атомами одновалентного водорода. Если обозначить валентность чёрточкой, то схему образования молекулы воды можно представить так:

Аналогично трёхвалентный азот соединяется с тремя атомами одновалентного водорода в молекулу аммиака

Формулы, в которых валентности элементов обозначены чёрточками, как вы знаете, называют структурными.

Структурная формула метана СН 4 - соединение четырёхвалентного углерода с водородом - будет следующей:

А каким образом соединяются в молекулу углекислого газа С0 2 атомы четырёхвалентного углерода и двухвалентного кислорода? Очевидно, этот способ может отразить только следующая структурная формула:

Является ли валентность постоянной величиной? Оказывается для водорода и кислорода это утверждение верно, а вот для азота и углерода нет, так как эти элементы могут проявлять и другие значения валентности. Например, азот может быть одно-, двух-, трёх-, четырёхвалентен. Его соединения с кислородом будут иметь разный состав. Следовательно, различают:

  • элементы с постоянной валентностью (например, одновалентные: Н, F; двухвалентные: О, Be; трёхвалентные: В, А1);
  • элементы с переменной валентностью (например, S проявляет валентности II, IV, VI; С1 - валентности I, III, V и VII).

Давайте научимся выводить формулы двухэлементных соединений по валентности.

Для вывода формулы соединения фосфора с кислородом, в котором фосфор пятивалентен, порядок действий следующий:

Аналогично выведем формулу соединения азота с кислородом, в котором азот четырёхвалентен.

Индекс 1 в формулах не записывается.

Знание валентности химических элементов необходимо для того, чтобы верно записать формулу вещества. Однако справедливо и обратное: по формуле вещества можно определить валентность одного из элементов, если известна валентность другого. Например, определим валентность серы в соединении, формула которого SО 3:

Лабораторный опыт № 4
Изготовление моделей молекул бинарных соединений

Используя шаростержневые наборы, соберите модели молекул следующих веществ:

  • вариант 1 - хлороводорода НС1, четырёххлористого углерода СС1 4 ;
  • вариант 2 - сернистого газа SО 2 , хлорида алюминия AlCl 3 .

Ключевые слова и словосочетания

  1. Ковалентная неполярная и ковалентная полярная химические связи.
  2. Электроотрицательность.
  3. Частичный заряд.
  4. Валентность.
  5. Составление формул ковалентных соединений по валентности.
  6. Определение валентности по формулам.

Работа с компьютером

  1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
  2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока - сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

Вопросы и задания

  1. У атомов водорода и фосфора почти одинаковые значения ЭО. Каков тип химической связи в молекуле фосфина РН 3 ?
  2. Определите тип химической связи и запишите схему её образования для веществ с формулами: a) S 2 , К 2 О и H 2 S; б) N 2 , Li 3 N и C1 3 N.
  3. В какой из молекул - хлороводорода НС1 или фтороводорода HF - ковалентная химическая связь более полярна?
  4. В следующих предложениях впишите пропущенные слова и выражения: «Ковалентная химическая связь образуется за счёт.... По числу общих электронных пар она бывает.... По ЭО ковалентную связь делят на... и...».
  5. Определите валентности элементов в соединениях с формулами: PbS, PbО 2 , FeS 2 , Fe 2 S 3 , SF 6 .
  6. Запишите формулы хлоридов - соединений элементов с одновалентным хлором: железа (III), меди (I), меди (II), марганца (IV), фосфора (V).