Циолковский попытался сделать математический расчёт движения такой ракеты в свободном пространстве. Понятно, что в ходе полёта масса ракеты из-за расхода топлива будет постепенно уменьшаться. Циолковский учёл это и вывел формулу, позволяющую определить скорость ракеты при постепенном изменении её массы. Эта формула называется теперь формулой Циолковского. Благодаря ей впервые стало возможным путём вычислений заранее определять лётные характеристики ракет. Позже Циолковский попробовал разрешить более сложную задачу - рассчитать движение ракеты при её вертикальном старте с поверхности Земли, то есть тогда, когда на неё воздействует гравитация и сила лобового сопротивления воздуха. Выведенные им формулы не учитывают многих обстоятельств, с которыми столкнулась позднее ракетодинамика (например, Циолковский не имел ещё представления о силах сопротивления при сверхзвуковых скоростях, движение ракеты он рассматривал как прямолинейное, а влияние систем управления на лётный характеристики вообще не учитывалось). Поэтому в наше время расчёты Циолковского можно рассматривать лишь как первое (грубое) приближение, но суть происходящего отражена в них верно.

Управлять полётом ракеты Циолковский предполагал или при помощи графитовых рулей, помещаемых в струе газа вблизи раструба (сопла) реактивного двигателя, или поворачивая сам раструб. Чтобы уменьшить отрицательное воздействие перегрузок на космонавтов при старте ракеты, Циолковский предлагал погружать их в жидкость равной плотности. Позже Циолковский пришёл к очень плодотворной идее многоступенчатых ракет. Он же заложил основы расчёта полёта этих ракет. (В 1926 г. Циолковский разработал теорию полёта двухступенчатой ракеты с последовательным отделением ступеней, а в 1929 г. - общую теорию полёта многоступенчатой ракеты.)

Но при всём увлечении Циолковского ракетодинамикой, ракета всегда оставалась для него только средством для преодоления земного притяжения и выхода в космос. Он много размышлял над теми проблемами, которые встретит человек, оказавшись в межпланетном пространстве и на других планетах, поэтому его с полным основанием можно считать также основоположником космонавтики. Многие предвидения Циолковского в этой области оказались чрезвычайно точными. Он, к примеру, красочно и очень верно описал ощущения, которые будет испытывать человек при старте ракеты и при выходе её в космическое пространство, в также то. Что он там увидит. Фантазия его далеко опережала своё время. Циолковский был твёрдо убеждён, что выход человечества в космос совершенно неизбежен и что именно освоение космоса поможет решить многие современные проблемы землян. В своих книгах он описывал целые кольца космических поселений на громадных орбитальных станциях будущего, расположенных вокруг солнца. Большую роль должны были играть на них космические оранжереи, так как в космосе можно собирать более значительные урожаи, чем на Земле. Он считал. Что обилие дешёвой солнечной энергии позволит человеку переместить в космос многие промышленные предприятия. «Завоевание солнечной системы, - писал Циолковский, - даст не только энергию и жизнь, которые в два миллиарда раз будут обильнее земной энергии и жизни, но и простор ещё более обильный».

Идеи Циолковского намного обогнали своё время. Современники не понимали его работ, правительство не спешило оказать ему материальную поддержку. В старости учёный с горечью писал: «Тяжело работать в одиночку многие годы при неблагоприятных условиях и не видеть ниоткуда ни просвета, ни поддержки». И в самом деле, исследования его протекали в очень тяжёлых условиях: мизерное жалование, большая семья, тесная и неудобная квартира, постоянная нужда, насмешки обывателей - всё это сопутствовало Циолковскому на протяжении всей его жизни. Многие свои книги Циолковскому пришлось публиковать за свой счёт и бесплатно рассылать по библиотекам.

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от, проверенной 23 февраля 2018; проверки требуют.

Однако первыми уравнение движения тела с переменной массой решили английские исследователи У. Мур (англ. William Moore ) в 1810-1811 годах, а также П. Г. Тэйт и У. Дж. Стил из Кембриджского университета в 1856 году.

Формула Циолковского может быть получена путём интегрирования дифференциального уравнения Мещерского для материальной точки переменной массы :

Как видно из таблицы, гравитационная составляющая является наибольшей в общей величине потерь. Гравитационные потери возникают из-за того, что ракета, стартуя вертикально, не только разгоняется, но и набирает высоту, преодолевая тяготение Земли, и на это также расходуется топливо. Величина этих потерь вычисляется по формуле:

Аэродинамические потери вызваны сопротивлением воздушной среды при движении ракеты в ней и рассчитываются по формуле:

Основные потери от сопротивления воздуха также приходятся на участок работы 1-й ступени ракеты, так как этот участок проходит в нижних, наиболее плотных слоях атмосферы.

Корабль должен быть выведен на орбиту со строго определёнными параметрами, для этого система управления на активном участке полёта разворачивает ракету по определённой программе, при этом направление тяги двигателя отклоняется от текущего направления движения ракеты, а это влечёт за собой потери скорости на управление, которые рассчитываются по формуле:

Наибольшая часть потерь на управление ракеты приходится на участок полёта 2-й ступени, поскольку именно на этом участке происходит переход от вертикального полёта в горизонтальный, и вектор тяги двигателя в наибольшей степени отклоняется по направлению от вектора скорости ракеты.

Выведенная в конце XIX века, формула Циолковского и сегодня составляет важную часть математического аппарата, используемого при проектировании ракет, в частности, при определении их основных массовых характеристик.

Это уравнение дает отношение начальной массы ракеты к её конечной массе при заданных значениях конечной скорости ракеты и удельного импульса .

Масса конструкции ракеты в большом диапазоне значений зависит от массы топлива почти линейно: чем больше запас топлива, тем больше размеры и масса ёмкостей для его хранения, больше масса несущих элементов конструкции, мощнее (следовательно, массивнее) двигательная установка. Выразим эту зависимость в виде:

одноступенчатой ракетой при данных условиях достижение поставленной цели невозможно

Данный расчет является упрощенным и не учитывает затрат на изменение потенциальной энергии тела, и при его прямом применении возникает иллюзия, что затраты уменьшаются с ростом высоты орбиты. В реальности без учета потерь на сопротивление атмосферы и гравитационных потерь за время вывода на орбиту потребная скорость (мгновенно приданная телу на уровне нулевой высоты над поверхностью) оказывается выше. Её можно примерно определить, применив закон сохранения механической энергии (гипотетическая эллиптическая орбита с перицентром в точке касания Земли и апоцентром на высоте целевой орбиты):

Это приближение не учитывает импульсов на переход с круговой орбиты Земли на эллиптическую и с эллиптической на новую круговую, а также применимо только к хомановским переходам (то есть применение для параболических и гиперболических переходов не работает), но много точнее, чем просто принимать за потребную скорость первую космическую для широкого диапазона высот НОО.

Тогда на высоте 250 км потребная скорость для вывода составит 8,063 м/с, а не 7,764, а для ГСО (35 786 км над уровнем Земли) - уже 10,762 м/с, а не 3,077 м/с, как было бы при игнорировании затрат на изменение потенциальной энергии.

Для первой ступени к массе полезной нагрузки добавляется полная масса второй ступени; после соответствующей подстановки получаем:

Таким образом, полная масса первой ступени составляет 368,1 т, а общая масса двухступенчатой ракеты с полезным грузом составит 10+55,9+368,1 = 434 т. Аналогичным образом выполняются расчёты для бо́льшего количества ступеней. В результате получаем, что стартовая масса трёхступенчатой ракеты составит 323,1 т, четырёхступенчатой - 294,2 т, пятиступенчатой - 281 т.

На этом примере видно, как оправдывается многоступенчатость в ракетостроении: при той же конечной скорости ракета с бо́льшим числом ступеней имеет меньшую массу.

Такого рода расчёты выполняются не только на первом этапе проектирования - при выборе варианта компоновки ракеты, но и на последующих стадиях проектирования, по мере детализации конструкции, формула Циолковского постоянно используется при поверочных расчётах, когда характеристические скорости пересчитываются, с учётом сложившихся из конкретных деталей соотношений начальной и конечной массы ракеты (ступени), конкретных характеристик двигательной установки, уточнения потерь скорости после расчёта программы полёта на активном участке , и т. д., чтобы контролировать достижение ракетой заданной скорости.

Формула Константина Эдуардовича Циолковского выражает максимальную скорость летательного аппарата, которой он достигает во время полета при реактивном движении. Она получается при интегрировании уравнения Мещерского.

Эта формула выражает скорость ракеты, переданную газами от сожженного топлива. Уравнение Мещерского и формула Циолковского неразрывно связаны - уравнение Мещерского описывает массу материальной точки, которая изменяется со временем, в то время как при реактивном движении ракеты постоянно идет уменьшение ее массы из-за сгорания топлива. Изменение скорости при изменяющейся массе (уменьшающейся в нашем случае) движущегося тела - вот что подразумевает под собой реактивное движение. Формула Циолковского основывается именно на нем.

Для решения ряда задач теоретической механики в области реактивного движения используют уравнение Мещерского (основное уравнение материальной точки переменной массы) и формулу Циолковского (формула конечной скорости летательного аппарата), которые называются основными соотношениям теории реактивного движения.

Основой при проектировании и планировании в области космических полетов является именно формула Циолковского, вывод которой стал настоящим прорывом для освоения космоса.

Задачи Циолковского

Для того, чтобы разрешить проблему межпланетных перелетов, К. Э. Циолковский рассмотрел в качестве средства перелета ракету. Он вывел формулу, с помощью которой можно получить зависимость массы летательного аппарата с топливом и скорости отдаления продуктов сгорания используемого топлива ракеты относительно нее. Покажем две его задачи:

  • Исследование движения тела с переменной массы с действующей на него одной реактивной силы.
  • Исследование движение тела в однородном поле силы тяжести переменной массы вблизи поверхности Земли.

Предисловие

Для всех космических полетов изначальной и основополагающей стала формула Циолковского для скорости ракеты, вывод которой представлен ниже.

Для начала необходимо приняв ее, грубо говоря, за материальную точку. На нее будут действовать силы притяжения Земли и других небесных тел (в момент взлета сила гравитации Земли будет, конечно же, наиболее сильной), сила сопротивления воздуха с одной стороны и противоположно им направленная реактивная сила, возникающая из-за выброса сгоревшего газа у основания тела. Ракета с большой силой выбрасывает эти газы, которые сообщают ей ускорение, направленное противоположно стороне выброса. Теперь необходимо представить эти рассуждения в виде формулы.

Сам принцип полета ракеты достаточно простой. С большой скоростью из ракеты вырывается газ, полученный при сгорании топлива, который сообщает самой ракете определенную силу, которая действует противоположно направлению движения. Так как считается, что внешние силы не действуют на ракету, то система будет замкнутой, и импульс ее не зависит от времени.

Уравнение Мещерского

Одним из основных примеров движения тела с изменяющейся массой является ракета с одной ступень, масса которой изменяется только из-за сжигания топлива, содержащегося в ней. Масса такой ракеты складывается из неизменяющейся (сама ракета и ее полезная нагрузка) и изменяющейся (топливо). Такой пример является упрощенной моделью.

Однако в современном ракетостроении используются многоступенчатые ракеты. Принцип их работы заключается в том, что благодаря большому объему ступеней они способны перевозить и использовать после взлета гораздо большее количество топлива. После его сгорания, ракете сообщается значительный импульс (гораздо больший, чем тот, которого можно добиться, используя одну ступень), а ставшие ненужными части открепляются от основы, уменьшая общий вес на 80-90%. Тем не менее, для расчета параметров многоступенчатой ракеты необходимо сложить показатели каждой из ее составляющей.

Дифференциальное уравнение Мещерского описывает движение материальной точки с переменной массой.

(m+dm)(υ+dυ) + dm′ υ′ - mυ = Fdt - в момент времени dt (разность между силой в момент времени t и dt+t и будет приращением).

Где m и υ зависят от времени, dt - какое-то время полета. За его образуется сила перемещения газа - dm′ υ′, dm′ - масса образованного из топлива газа. F - равнодействующая сила.

В описанном выше выражении приращения массы ракеты и газа и скорости устремляется к нулю, поэтому выражение принимает следующий вид:

mdυ = υ′′dm + Fdt,

причем υ′′ равняется разности скорости газа и скорости и является скоростью истечения газа.

Уравнение по форме начинает совпадать со вторым законом Ньютона - F = ma = m

Оно и называется уравнением Мещерского.

Вывод формулы Циолковского

Необходимо вывести формулу, описывающую движение тела с переменной массой. Формула Циолковского таковой и является. Вывод представлен ниже.

В данных вычислениях считается, что на движущееся тело не действуют внешние силы, то есть F = 0.

Тогда mdυ = υ′′dm

Так как воздействие внешних сил на летящую ракету равно нулю, то она движется прямолинейно, а скорость движения противоположно направлена скорости выхода газа. Соответственно, υ = -υ′′

Получается выражение, которое необходимо проинтегрировать.

Необходимо найти константу. Для этого достаточно подставить в уравнение начальные условия - скорость равна нулю, а масса - сумме массы топлива и массы ракеты (m 0 + m)

Вообще говоря, m в формуле складывается из двух параметров - из полезной нагрузки и конструкции ракеты. Полезной нагрузкой называется общая масса груза и экипажа.

Подставляем найденную константу в формулу. В результате и получается выражение искомой формулы.

Это и есть один из вариантов формулы Циолковского для скорости. Однако иногда необходимо принять во внимание именно массу. Поэтому ее иногда записывают следующим образом:

Данная формула используется для расчета массы топлива, которая требуется для развития определенной скорости при заданных условиях.

Рассмотрю далее небольшую задачу. Предположим, ракете необходимо развить первую космическую скорость для вращения по орбите Земли. Тогда для этого необходимо в первую очередь рассчитать массу топлива, конечно же. Тогда ее очень просто выразить из формулы Циолковского.

Релятивистская механика

Все вышеописанные формулы могут применяться только в том случае, когда скорость ракеты много меньше скорости света (υ<

Однако если скорость движения ракеты можно сравнить со скоростью света, то необходимо применять уже другие законы.

Пусть m и υ - масса ракеты в состояние и ее скорость в любое время t, а υ′ и m′ - скорость выхода газа и его масса в это же время. То есть m′ - масса вышедшего газа, поэтому его значение для расчета неважно, m′ = 0.

Необходимо расписать закон сохранения импульса и закон сохранения энергии в релятивистской механике, затем продифференцировать первое уравнение, учитывая, что m′=0 и получить выражение третье.

где u - скорость испускания газов.

Исходя из закона сложения скоростей в релятивистской, механике следует такое выражение. Его необходимо преобразовать относительно υ′ и проинтегрировать для получения окончательного варианта уравнения.

Можно несколько усложнить задачу и рассмотреть в качестве примера ракету с несколькими ступенями. Таким образом, формула Циолковского для многоступенчатой ракеты представляет собой сумму необходимых для расчета параметров. То есть, для того, чтобы рассчитать скорость для многоступенчатой ракеты, следует сложить скорость каждой из составляющей части.

Несколько выводов из формулы Циолковского

Основа всех космических полетов - формула Циолковского.

  • Скорость движения непосредственно зависит от относительной скорости выбрасывания газов, поэтому, чем больше скорость выбрасывания, тем быстрее летит ракета.
  • Чем больше отношение суммы массы ракеты и массы топлива к массе ракеты, тем больше скорость ракеты. Увеличение происходит даже по определенной зависимости - если отношение масс увеличивается в геометрической прогрессии, то есть, каждое предыдущее число меньше последующего в определенное количество раз, то скорость растет в арифметической прогрессии - каждое предыдущее число меньше последующего на определенное число. Однако это совершенно не означает, что скорость пропорциональна массе. Сам Циолковский в своих трудах замечал, что скорость растет медленнее по сравнению с увеличением топлива, однако не имеет предела.
  • Соответственно, для развития больше скорости необходимо увеличивать скорость выбрасывания газа и массу топлива.

КПД ракеты

При расчете полета важно четко осознавать, какой именно процент полученной после сгорания топлива энергии используется в качестве полезной работы?

Таким образом, коэффициентом полезного действия принято называть отношение кинетических энергий ракеты и газов после выбрасывания. Обозначим m и m′ за массу ракеты в начале и в конце полета, продолжающийся время t. Соответственно, - скорость выбрасывания газов.

Тогда, по формуле Циолковского, КПД двигателя ракеты можно найти следующим образом:

Следует заметить, что данный КПД является очень небольшим и не превышает 5%, притом как у тепловых двигателей этот показатель равняется и 80%.

Другая форма формулы

В некоторых ресурсах применяется несколько иная формула Циолковского, уравнение, в котором вместо υ′ применяется другой параметр - I. В данном случае I называют удельным импульсом, и даже приводится объяснение, что удельный импульс выражается через тягу двигателя и его сжиганию массы топлива за единицу времени. Первый вопрос, который приходит на ум - вопрос о размерности. В отличие от скорости, импульс имеет другую размерность, которая будет противоречить сути формулы. Однако, непосредственно удельный импульс совпадает по размерности со скоростью.

Удельный импульс показывает количество секунд, при котором двигатель, истратив единицу топлива, получит единицу силы. Применяется сугубо в описании реактивного двигателя.

Использование при создании ракет

Формулу Циолковского для многоступенчатой ракеты применяют и при проектировании ракеты. Для этого используется совершенно логичная зависимость, которая практически является прямопропорциональной - чем больше используется при полете топлива, тем больше будет масса самой ракеты. Это обуславливается тем, что для перевозки большого количества топлива требуются, соответственно, и большие резервуары, поэтому увеличивается в результате и размер корабля, и даже сам двигатель. Некоторым решением возникающей проблемы является использование твердого топлива, которое требует меньше условий для хранения. Однако в настоящий момент оно обладает наименьшим удельным импульсом из существующих.

Космические скорости

Формула Циолковского используется также для расчета необходимого количества топлива для развития определенной скорости - обычно это одна из четырех космических.

  • Первая космическая скорость - корабль выходит на орбиту планеты. Для Земли равняется примерно 7.91 км/с.
  • Вторая космическая скорость - ракета преодолевает силу притяжения и выходит в открытое пространство. Для Земли - 11.2 км/с.
  • Третья космическая скорость - ракета преодолевает силу притяжения звезды в системе (например, Солнца) и выходит за пределы. Для Солнечной системы - 42 км/с, однако эти расчеты являются неточными из-за необходимости преодолевать притяжение планеты.
  • Четвертая космическая скорость - корабль способен покинуть Галактику. Для Млечного пути - более 500 км/с, рассчитывается в зависимости от точки нахождения.

В данном разделе мы будем рассматривать движение тел переменной массы. Такой вид движения часто встречается в природе и в технических системах. В качестве примеров, можно упомянуть:

    Падение испаряющейся капли;

    Перемещение тающего айсберга по поверхности океана;

    Движение кальмара или медузы;

    Полет ракеты.

Ниже мы выведем простое дифференциальное уравнение, описывающее движение тела переменной массы, рассматривая полет ракеты.

Дифференциальное уравнение реактивного движения

Реактивное движение основано на третьем законе Ньютона , в соответствии с которым "сила действия равна по модулю и противоположна по направлению силе противодействия". Горячие газы, вырываясь из сопла ракеты, образуют силу действия. Сила реакции, действующая в противоположном направлении, называется силой тяги . Эта сила как раз и обеспечивает ускорение ракеты.

Пусть начальная масса ракеты равна \(m,\) а ее начальная скорость составляет \(v.\) Через некоторое время \(dt\) масса ракеты уменьшится на величину \(dm\) в результате сгорания топлива. Это приведет к увеличению скорости ракеты на \(dv.\) Применим закон сохранения импульса к системе "ракета + поток газа". В начальный момент времени импульс системы равен \(mv.\) Через малое время \(dt\) импульс ракеты будет составлять \[{p_1} = \left({m - dm} \right)\left({v + dv} \right),\] а импульс, связанный с выхлопными газами, в системе координат относительно Земли будет равен \[{p_2} = dm\left({v - u} \right),\] где \(u\) − скорость истечения газов относительно Земли. Здесь мы учли, что скорость истечения газов направлена в сторону, противоположную скорости движения ракеты (рисунок \(1\)). Поэтому, перед \(u\) поставлен знак "минус".

В соответствии с законом о сохранении полного импульса системы, можно записать: \[ {p = {p_1} + {p_2},}\;\; {\Rightarrow mv = \left({m - dm} \right)\left({v + dv} \right) + dm\left({v - u} \right).} \]

Рис.1

Преобразуя данное уравнение, получаем: \[\require{cancel} \cancel{\color{blue}{mv}} = \cancel{\color{blue}{mv}} - \cancel{\color{red}{vdm}} + mdv - dmdv + \cancel{\color{red}{vdm}} - udm. \] В последнем уравнении можно пренебречь слагаемым \(dmdv,\) рассматривая малые изменения этих величин. В результате уравнение запишется в виде \ Разделим обе части на \(dt,\) чтобы преобразовать уравнение в форму второго закона Ньютона : \ Данное уравнение называется дифференциальным уравнением реактивного движения . Правая часть уравнения представляет собой силу тяги \(T:\) \ Из полученной формулы видно, что силя тяги пропорциональна скорости истечения газов и скорости сгорания топлива . Конечно, это дифференциальное уравнение описывает идеальный случай. Оно не учитывает силу тяжести и аэродинамическую силу . Их учет приводит к значительному усложнению дифференциального уравнения.

Формула Циолковского

Если мы проинтегрируем выведенное выше дифференциальное уравнение, то получим зависимость скорости ракеты от массы сгоревшего топлива. Результирующая формула называется идеальным уравнением реактивного движения или формулой Циолковского , который вывел ее в \(1897\) году.

Чтобы получить указанную формулу, удобно переписать дифференциальное уравнение в следующем виде: \ Разделяя переменные и интегрируя, находим: \[ {dv = u\frac{{dm}}{m},}\;\; {\Rightarrow \int\limits_{{v_0}}^{{v_1}} {dv} = \int\limits_{{m_0}}^{{m_1}} {u\frac{{dm}}{m}} .} \] Заметим, что \(dm\) обозначает уменьшение массы. Поэтому, возьмем приращение \(dm\) с отрицательным знаком. В результате, уравнение принимает вид: \[ {\left. v \right|_{{v_0}}^{{v_1}} = - u\left. {\left({\ln m} \right)} \right|_{{m_0}}^{{m_1}},}\;\; {\Rightarrow {v_1} - {v_0} = u\ln \frac{{{m_0}}}{{{m_1}}}.} \] где \({v_0}\) и \({v_1}\) − начальная и конечная скорость ракеты, а \({m_0}\) и \({m_1}\) − начальная и конечная масса ракеты, соответственно.

Полагая \({v_0} = 0,\) получим формулу, выведенную Циолковским: \ Данная формула определяет скорость ракеты в зависимости от изменения ее массы по мере сгорания топлива. С помощью этой формулы можно грубо оценить запас топлива, необходимый для ускорения ракеты до определенной скорости.

Космонавтика регулярно достигает ошеломительных успехов. Искусственным спутникам Земли постоянно находятся все более разнообразные применения. Пребывание космонавта на околоземной орбите стало обычным явлением. Это было бы невозможно без главной формулы космонавтики — уравнения Циолковского.

В наше время продолжается изучение как планет и других тел нашей Солнечной системы (Венеры, Марса, Юпитера, Урана, Земли и пр.), так и удаленных объектов (астероиды, другие системы и галактики). Умозаключения о характеристике космического движения тел Циолковского положили начало теоретическим основам космонавтики, которые привели к изобретению десятков моделей электро-реактивных двигателей и крайне интересных механизмов, например, солнечного паруса.

Основные проблемы освоения космоса

В качестве проблем освоения космоса четко выделяются три области исследования и разработок в науке и технике:

  1. Полеты около Земли или конструирование искусственных спутников.
  2. Лунные полеты.
  3. Планетарные полеты и полеты к объектам Солнечной системы.

Уравнение Циолковского для реактивного движения способствовало тому, что человечество в каждой из этих областей достигло удивительных результатов. А также появилось множество новых прикладных видов наук: космическая медицина и биология, системы жизнеобеспечения на космическом аппарате, космическая связь, и др.

Большинство людей сегодня слышали об основных достижениях: первая высадка на луну (США), первый спутник (СССР) и подобное. Помимо самых известных достижений, которые у всех на слуху, существует много и других. В частности, СССР принадлежат:

  • первая орбитальная станция;
  • первый облет Луны и фотографии обратной стороны;
  • первая посадка на Луну автоматизированной станции;
  • первые полеты аппаратов к другим планетам;
  • первая посадка на Венеру и Марс и пр.

Многие даже не представляют, насколько огромными были достижения СССР в сфере космонавтики. Во всяком случае, они были значительно больше, чем просто первый спутник.

Но и США внесли не меньший вклад в развитие космонавтики. В США провели:

  • Все крупные достижения в использовании околоземной орбиты (спутники и спутниковая связь) для научных целей и решения прикладных задач.
  • Множество экспедиций на Луну, исследования Марса, Юпитера, Венеры и Меркурия с расстояния пролетных траекторий.
  • Множество научных и медицинских экспериментов, проводимых в невесомости.

И хотя на данный момент достижения других стран меркнут на фоне СССР и США, но Китай, Индия и Япония активно присоединились к изучению космоса в период после 2000 года.

Однако достижения космонавтики не ограничиваются только верхними слоями планеты и высокими научными теориями. На простую жизнь она тоже оказала большое влияние. В результате изучения космоса в нашу жизнь пришли такие вещи: молния, липучка, тефлон, спутниковая связь, механические манипуляторы, беспроводные инструменты, солнечные батареи, искусственное сердце и многое другое. И именно формула скорости Циолковского, которая помогла преодолеть гравитационное притяжение и способствовала появлению в науке космической практики, помогла всего этого добиться.

Термин «космодинамика»

Уравнение Циолковского легло в основу космодинамики. Однако следует разобраться с этим термином подробнее. Особенно в вопросе близких к нему по смыслу понятий: космонавтика, небесная механика, астрономия и др. Космонавтика переводится с греческого «плавание во Вселенной». В обычном случае этим термином обозначается масса всех технических возможностей и научных достижений, позволяющих изучать комическое пространство и небесные тела.

Космические полеты — это то, о чем человечество мечтало столетиями. И эти мечты превратились в реальность, из теории — в науку, а все благодаря формуле Циолковского для скорости ракеты. Из трудов этого великого ученого нам известно, что теория космонавтики стоит на трех столпах:

  1. Теория, описывающая движение космических аппаратов.
  2. Электро-ракетные двигатели и их производство.
  3. Астрономические знания и исследования Вселенной.

Как уже ранее отмечалось, в космическую эру появилось множество других научно-технических дисциплин, таких как: системы управления космическими кораблями, системы связи и передачи данных в космосе, навигация в космическом пространстве, космическая медицина и многое другое. Стоит отметить, что во времена зарождения основ космонавтики даже не было как такового радио. Изучение электромагнитных волн и передачи на большие расстояния с их помощью информации только начиналось. Поэтому основатели теории серьезно рассматривали в качестве способа передачи данных световые сигналы — отраженные в сторону Земли солнечные лучи. Сегодня невозможно представить космонавтику без всех смежных с ней прикладных наук. В те далекие времена воображение ряда ученых действительно поражало. Помимо способов связи ими также затрагивались такие темы, как формула Циолковского для многоступенчатой ракеты.

Можно ли выделить среди всего многообразия какую-либо дисциплину в качестве главной? Ею является теория движения космических тел. Именно она служит главным звеном, без которого невозможна космонавтика. Эту область науки принято называть космодинамикой. Хотя у нее существует множество тождественных названий: небесная или космическая баллистика, механика полета в космосе, прикладная небесная механика, наука о движении искусственных небесных тел и т. д. Все они обозначают одну и ту же область изучения. Формально космодинамика входит в небесную механику и использует ее методы, однако есть крайне важное отличие. Небесная механика только изучает орбиты у нее нет возможности выбора, а вот космодинамика призвана определять оптимальные траектории достижения тех или иных небесных тел космическими аппаратами. И уравнение Циолковского для реактивного движения позволяет кораблям определить как именно можно влиять на траекторию полета.

Космодинамика как наука

С тех пор, как К. Э. Циолковский вывел формулу, наука о движении небесных тел прочно оформилась как космодинамика. Она позволяет космическим кораблям пользоваться методами поиска оптимального перехода между разными орбитами, что называется орбитальным маневрированием, и является основой теории передвижения в космосе, точно так же как базой для полетов в атмосфере является аэродинамика. Однако она не единственная наука, занимающуюся данным вопросом. Помимо нее существует еще и ракетодинамика. Обе эти науки составляют прочную основу для современной космической техники и обе входят в раздел небесной механики.

Космодинамика состоит из двух основных разделов:

  1. Теория о движении центра инерции (масс) объекта в космосе, или теория о траекториях.
  2. Теория о движении космического тела относительно его центра инерции, или теория вращения.

Чтобы разобраться что представляет собой уравнение Циолковского, нужно хорошо понимать механику, т. е. законы Ньютона.

Первый закон Ньютона

Любое тело движется равномерно и прямолинейно или находится в покое до тех пор, пока приложенные к нему внешние силы не вынудят его изменить это состояние. Иными словами вектор скорости такого движения остается постоянным. Такое поведение тел также называется инерциальным движением.

Любой другой случай, при котором происходит какой-либо изменение вектора скорости, означает, что тело обладает ускорением. Интересным примером в данном случае является движение материальной точки по окружности или любого спутника по орбите. В данном случае происходит равномерное движение, но не прямолинейное, ведь вектор скорости постоянно меняет направление, а значит, ускорение не равно нулю. Данное изменение скорости можно вычислить по формуле v2 / r, где v — постоянная величина скорости, а r — радиус орбиты. Ускорение в этом примере будет направлено к центру окружности в любой точки траектории движения тела.

Исходя из определения закона, причиной изменения направления материальной точки может быть только сила. В ее роли (для случая со спутником) выступает гравитация планеты. Притяжение планет и звезд, как легко можно догадаться, имеет большое значение в космодинамике в целом и при использовании уравнения Циолковского, в частности.

Второй закон Ньютона

Ускорение прямо пропорционально силе и обратно пропорционально массе тела. Или в математической форме: a = F / m, или более привычно — F = ma, где m — это коэффициент пропорциональности, который представляет собой меру для инерции тела.

Так как любая ракета представляется, как движение тела с переменной массой, уравнение Циолковского будет изменяться каждую единицу времени. В вышеописанном примере о спутнике, движущемся вокруг планеты, зная его массу m, можно легко выяснить силу, под действием которой он вращается по орбите, а именно: F = mv2/r. Очевидно, что данная сила будет направлена к центру планеты.

Возникает вопрос: почему спутник не падает на планету? Он не падает, так как его траектория движения не пересекается с поверхностью планеты, потому что природа не заставляет его двигаться вдоль действия силы, ибо ей сонаправлен только вектор ускорения, а не скорости.

Также следует отметить, что в условиях, когда известна сила, действующая на тело, и его масса, можно выяснить ускорение тела. А по нему математическими методами определяется путь, по которому двигается это тело. Здесь мы приходим к двум основным задачам, решением которых занимается космодинамика:

  1. Выявление сил, при помощи которых можно манипулировать движением космического корабля.
  2. Определение движения этого корабля, если известны действующие на него силы.

Вторая задача является классическим вопросом для небесной механики в то время, как первая показывает исключительную роль космодинамики. Поэтому в данной области физики помимо формулы Циолковского для реактивного движения крайне важно понимать ньютоновскую механику.

Третий закон Ньютона

Причиной силы, действующей на какое-либо тело, всегда является другое тело. Но верно также и обратное. В этом заключается суть третьего закона Ньютона, который гласит, что всякому действию есть действие, равное по величине, но противоположно направленное, называемое противодействием. Другими словами, если тело А действует с силой F на тело B, то тело B действует на тело А с силой -F.

В примере со спутником и планетой третий закон Ньютона приводит нас к пониманию того, что с какой силой планета притягивает спутник, точно с такой же спутник притягивает планету. Данная сила притяжения ответственна за придание ускорения спутнику. Но она также придает ускорение и планете, но ее масса так велика, что данное изменение скорости ничтожно мало для нее.

Формула Циолковского для реактивного движения полностью строится на понимании последнего закона Ньютона. Ведь именно за счет выбрасываемой массы газов основное тело ракеты приобретает ускорение, которое позволяет ему двигаться в нужном направление.

Немного о системах отсчета

Рассматривая какие-либо физические явления, сложно не затрагивать такую тему, как систему отсчета. Движение космического корабля, как и любого другого тела в пространстве, может фиксироваться в разных координатах. Не существует неправильных систем отсчета, есть лишь более удобные и менее. Например, движение тел в Солнечной системе лучше всего описывать в гелиоцентрической системе отсчета, то есть в координатах, связанных с Солнцем, также именуемых системой Коперника. Однако движение Луны в данной системе рассматривать менее удобно, поэтому ее изучают в геоцентрических координатах — отсчет ведется относительно Земли, это называется системой Птолемея. А вот, если стоит вопрос в том, попадет ли пролетающий рядом астероид в Луну, удобнее будет использовать опять гелиоцентрические координаты. Важно уметь пользоваться всеми координатными системами и быть способным смотреть на задачу с разных точек зрения.

Ракетное движение

Основным и единственным способом передвижения в космическом пространстве является ракета. Впервые этот принцип был выражен, по данным сайта «Хабр», формулой Циолковского в 1903 году. С тех пор инженеры космонавтики изобрели десятки видов ракетных двигателей, использующих самые разнообразные виды энергии, но все они объединены одним принципом работы: выбрасывание части массы из запасов рабочего тела для получения ускорения. Силу, которая образуется в результате данного процесса, принято называть силой тяги. Приведем некоторые умозаключения, которые позволят прийти к уравнению Циолковского и выводу его основной формы.

Очевидно, что тяговая сила будет увеличиваться в зависимости от объемов выбрасываемой из ракеты массы в единицу времени и той скорости, которую удается этой массе сообщить. Таким образом, получается соотношение F = w * q, где F — тяговая сила, w — скорость отбрасываемой массы (м/с) и q — масса, расходуемая в единицу времени (кг/с). Стоит отдельно отметить важность системы отсчета, связанной именно с самой ракетой. В противном случае невозможно характеризовать силу тяги ракетного двигателя, если измерять все относительно Земли или других тел.

Исследования и эксперименты показали, что соотношение F = w * q остается справедливым только для случаев, когда выбрасываемая масса представляет собой жидкость или твердое тело. Но в ракетах используется струя раскаленного газа. Поэтому в соотношение нужно ввести ряд поправок, и тогда получим дополнительный член соотношения S * (p r — p a), который суммируется с изначальным w * q. Здесь p r — давление, оказываемое газом, на срезе сопла; p a — атмосферное давление и S — площадь сопла. Таким образом, уточненная формула будет выглядеть следующим образом:

F = w * q + Sp r — Sp a.

Откуда видно, что по мере набора высоты ракетой атмосферное давление будет становиться меньше, а сила тяги — возрастать. Однако физики любят удобные формулы. Поэтому зачастую используется формула, похожая на свою первоначальную форму F = w э * q, где w э — эффективная скорость истечения массы. Она определяется экспериментальным путем во время испытания двигательной установки и численно равна выражению w + (Sp r — Sp a) / q.

Рассмотрим понятие, тождественное w э — удельный импульс тяги. Удельный — значит относящийся к чему-то. В данном случае это к гравитации Земли. Для этого в вышеописанной формуле правая часть умножается и делится на g (9,81 м/с2):

F = w э * q = (w э / g) * q * g или F = I уд * q * g

Измеряется данная величина I уд в Н*с/кг или что тоже самое м/с. Иными словами удельный импульс тяги измеряется в единицах скорости.

Формула Циолковского

Как легко можно догадаться, помимо тяги двигателя на ракету действует множество других сил: притяжение Земли, гравитация других объектов Солнечной системы, атмосферное сопротивление, давление света и т. д. Каждая из этих сил придает свое ускорение ракете, а суммарное из действие сказывается на итоговом ускорение. Поэтому удобно ввести понятие реактивного ускорения или a r = F т / M, где М — масса ракеты в определенный период времени. Реактивное ускорение — это ускорение, с которым двигалась бы ракета при отсутствии действующих на нее сил из вне. Очевидно, что по мере расходования массы, ускорение будет увеличиваться. Поэтому есть еще одна удобная характеристика — начальное реактивное ускорение a r0 = F т * M 0 , где М 0 — это масса ракеты в момент начала движения.

Логичным будет звучать вопрос о том, какую скорость способна развить ракета в подобном пустом пространстве, после того как израсходует какое-то количество массы рабочего тела. Пусть масса ракеты изменилась от m 0 до m 1 . Тогда скорость ракеты после равномерного израсходования массы до значения m 1 кг будет определяться формулой:

V = w * ln(m 0 / m 1)

Это не что иное, как формула движения тел с переменной массой или уравнение Циолковского. Она характеризует энергетический ресурс ракеты. А скорость, получаемая данной формулой, называется идеальной. Можно записать данную формулу в ином тождественном варианте:

V = I уд * ln(m 0 / m 1)

Стоит отметить, применение Формулы Циолковского для расчета топлива. Точнее сказать, массы ракеты носителя, которая потребуется для выведения определенного веса на орбиту Земли.

В конце следует сказать и о таком великом ученом, как Мещерский. Вместе с Циолковским они являются праотцами космонавтики. Мещерский внес огромный вклад в создание теории движения объектов переменной массы. В частности, формула Мещерского и Циолковского выглядит следующим образом:

m * (dv / dt) + u * (dm / dt) = 0,

где v — скорость материальной точки, u — скорость отброшенной массы относительно ракеты. Данная соотношение также называется дифференциальным уравнением Мещерского, тогда формула Циолковского получается из нее как частное решение для материальной точки.