Занятие 2

Классификация химических реакций в неорганической химии

Химические реакции классифицируют по различным признакам.

    По числу исходных веществ и продуктов реакции

    Разложение – реакция, в которой из одного сложного вещества образуются два и более простых или сложных веществ

2KMnO 4 → K 2 MnO 4 + MnO 2 + O 2

    Соединение – реакция, в результате которой из двух и более простых или сложных веществ, образуется одно более сложное

NH 3 + HCl → NH 4 Cl

    Замещение – реакция, протекающая между простыми и сложными веществами, при которой атомы простого вещества замещаются на атомы одного из элементов в сложном веществе.

Fe + CuCl 2 → Cu + FeCl 2

    Обмен – реакция, при которой два сложных вещества обмениваются своими составными частями

Al 2 O 3 + 3H 2 SO 4 → Al 2 (SO 4) 3 + 3H 2 O

Одна из реакций обмена реакция нейтрализации – это реакция между кислотой и основанием, в результате которой получается соль и вода.

NaOH + HCl → NaCl + H 2 O

    По тепловому эффекту

    Реакции, протекающие с выделением тепла, называются экзотермическими реакциями.

С + О 2 → СО 2 + Q

2) Реакции, протекающие с поглощением тепла, называются эндотермическими реакциями.

N 2 + O 2 → 2NO – Q

    По признаку обратимости

    Обратимые – реакции, проходящие при одних и тех условиях в двух взаимопротивоположных направлениях.

    Реакции, которые протекают только в одном направлении и завершаются полным превращением исходных веществ в конечные, называются необратимыми, при этом должен выделяться газ, осадок, или малодиссоциирующее вещество- вода.

BaCl 2 + H 2 SO 4 → BaSO 4 ↓ + 2HCl

Na 2 CO 3 +2HCl → 2NaCl + CO 2 + H 2 O

    Окислительно-восстановительные реакции – реакции, протекающие с изменением степени окисления.

Са + 4HNO 3 → Ca(NO 3) 2 + 2NO 2 + 2H 2 O

И реакции, протекающие без изменения степени окисления.

HNO 3 + KOH → KNO 3 + H 2 O

5.Гомомгенные реакции, если исходные вещества и продукты реакции находятся в одном агрегатном состоянии. И гетерогенные реакции, если продукты реакции и исходные вещества находятся в разных агрегатных состояниях.

Например: синтез аммиака.

Окислительно-восстановительные реакции.

Различают два процесса:

Окисление – это отдача электронов, в результате степень окисления увеличивается. Атом молекула или ион, отдающий электрон называется восстановителем .

Mg 0 - 2e → Mg +2

Восстановление – процесс присоединения электронов, в результате степень окисления уменьшается. Атом молекула или ион, присоединяющий электрон называется окислителем .

S 0 +2e → S -2

O 2 0 +4e → 2O -2

В окислительно–восстановительных реакциях должно соблюдаться правило электронного баланса (число присоединенных электронов должно быть равно числу отданных, свободных электронов быть не должно). А так же должен соблюдаться атомный баланс (число одноименных атомов в левой части должно быть равно числу атомов в правой части)

Правило написание окислительно-восстановительных реакций.

    Написать уравнение реакции

    Поставить степени окисления

    Найти элементы, у которых изменяется степень окисления

    Выписать попарно их.

    Найти окислитель и восстановитель

    Написать процесс окисление или восстановления

    Уравнять электроны, пользуясь правилом электронного баланса (найти н.о.к.), расставив коэффициенты

    Написать суммарное уравнение

    Поставить коэффициенты в уравнение химической реакции

KClO 3 → KClO 4 + KCl; N 2 + H 2 → NH 3 ; H 2 S + O 2 → SO 2 + H 2 O; Al + O 2 = Al 2 O 3 ;

Сu + HNO 3 → Cu(NO 3) 2 + NO + H 2 O; KClO 3 → KCl + O 2 ; P + N 2 O = N 2 + P 2 O 5 ;

NO 2 + H 2 O = HNO 3 + NO

. Скорость химических реакций. Зависимость скорости химических реакций от концентрации, температуры и природы реагирующих веществ.

Химические реакции протекают с разными скоростями. Изучением скорости химической реакции, а также выявлением её зависимости от условий проведения процесса занимается наука - химическая кинетика.

υ гомогенной реакции определяется изменением количества вещества в единице объёма:

υ =Δ n / Δt ∙V

где Δ n – изменение числа молей одного из веществ (чаще всего исходного, но может быть и продукта реакции), (моль);

V – объем газа или раствора (л)

Поскольку Δ n / V = ΔC (изменение концентрации), то

υ =Δ С / Δt (моль/л∙ с)

υ гетерогенной реакции определяется изменением количества вещества в единицу времени на единице поверхности соприкосновения веществ.

υ =Δ n / Δt ∙ S

где Δ n – изменение количества вещества (реагента или продукта), (моль);

Δt – интервал времени (с, мин);

S – площадь поверхности соприкосновения веществ (см 2 , м 2)

Почему скорость разных реакций не одинакова?

Для того чтобы началась химическая реакция, молекулы реагирующих веществ должны столкнуться. Но не каждое их столкновение приводит к химической реакции. Для того чтобы столкновение привело к химической реакции, молекулы должны иметь достаточно высокую энергию. Частицы, способные при столкновении, вступать в химическую реакцию, называются активными. Они обладают избыточной энергией по сравнению со средней энергией большинства частиц – энергией активации Е акт . Активных частиц в веществе намного меньше, чем со средней энергией, поэтому для начала многих реакций системе необходимо сообщить некоторую энергию (вспышка света, нагревание, механический удар).

Энергетический барьер (величина Е акт ) разных реакций различен, чем он ниже, тем легче и быстрее протекает реакция.

2. Факторы, влияющие на υ (количество соударений частиц и их эффективность).

1) Природа реагирующих веществ: их состав, строение => энергия активации

▪ чем меньше Е акт , тем больше υ;

2) Температура : при t на каждые 10 0 С, υ в 2-4 раза (правило Вант-Гоффа).

υ 2 = υ 1 ∙ γ Δt/10

Задача 1. Скорость некоторой реакции при 0 0 С равна 1 моль/л ∙ ч, температурный коэффициент реакции равен 3. Какой будет скорость данной реакции при 30 0 С?

υ 2 = υ 1 ∙ γ Δt/10

υ 2 =1∙3 30-0/10 = 3 3 =27 моль/л∙ч

3) Концентрация: чем больше, тем чаще происходят соударения и υ . При постоянной температуре для реакции mA + nB = C по закону действующих масс:

υ = k ∙ С A m C B n

где k – константа скорости;

С – концентрация (моль/л)

Закон действующих масс:

Скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных их коэффициентам в уравнении реакции.

Задача 2. Реакция идет по уравнению А +2В → С. Во сколько раз и как изменится скорость реакции, при увеличении концентрации вещества В в 3 раза?

Решение:υ = k ∙ С A m ∙ C B n

υ = k ∙ С A ∙ C B 2

υ 1 = k ∙ а ∙ в 2

υ 2 = k ∙ а ∙ 3 в 2

υ 1 / υ 2 = а ∙ в 2 / а ∙ 9 в 2 = 1/9

Ответ: увеличится в 9 раз

Для газообразных веществ скорость реакции зависит от давления

Чем больше давление, тем выше скорость.

4) Катализаторы – вещества, которые изменяют механизм реакции, уменьшают Е акт => υ .

▪ Катализаторы остаются неизменными по окончании реакции

▪ Ферменты – биологические катализаторы, по природе белки.

▪ Ингибиторы – вещества, которые ↓ υ

1. При протекании реакции концентрация реагентов:

1) увеличивается

2) не изменяется

3) уменьшается

4) не знаю

2. При протекании реакции концентрация продуктов:

1) увеличивается

2) не изменяется

3) уменьшается

4) не знаю

3. Для гомогенной реакции А+В → … при одновременном увеличении молярной концентрации исходных веществ в 3 раза скорость реакции возрастает:

1) в 2 раза

2) в 3 раза

4) в 9 раз

4. Скорость реакции H 2 + J 2 →2HJ понизится в 16 раз при одновременном уменьшении молярных концентраций реагентов:

1) в 2 раза

2) в 4 раза

5. Скорость реакции CO 2 + H 2 → CO + H 2 O при увеличении молярных концентраций в 3 раза (CO 2) и в 2 раза (H 2) возрастает:

1) в 2 раза

2) в 3 раза

4) в 6 раз

6. Скорость реакции C (T) + O 2 → CO 2 при V-const и увеличении количеств реагентов в 4 раза возрастает:

1) в 4 раза

4) в 32 раза

10. Скорость реакции А+В → … увеличится при:

1) понижении концентрации А

2) повышении концентрации В

3) охлаждении

4) понижении давления

7. Скорость реакции Fe + H 2 SO 4 → FeSO 4 + H 2 выше при использовании:

1) порошка железа, а не стружек

2) железных стружек, а не порошка

3) концентрированной H 2 SO 4 , а не разбавленной H 2 SO 4

4) не знаю

8. Скорость реакции 2H 2 O 2 2H 2 O + O 2 будет выше, если использовать:

1) 3%-й раствор H 2 O 2 и катализатор

2) 30%-й раствор H 2 O 2 и катализатор

3) 3%-й раствор H 2 O 2 (без катализатора)

4) 30%-й раствор H 2 O 2 (без катализатора)

Химическое равновесие. Факторы, влияющие на смещение равновесие. Принцип Ле-Шателье.

Химические реакции по направлению их протекания можно разделить

Необратимые реакции протекают только в одном направлении (реакции ионного обмена с , ↓, мдс, горения и некоторые др.)

Например, AgNO 3 + HCl → AgCl↓ + HNO 3

Обратимые реакции при одних и тех же условиях протекают в противоположных направлениях (↔).

Например, N 2 + 3H 2 ↔ 2NH 3

Состояние обратимой реакции, при котором υ = υ называется химическим равновесием.

Чтобы реакция на химических производствах проходила как можно полнее, необходимо сместить равновесие в сторону продукта. Для того, чтобы определить, как тот или иной фактор изменит равновесие в системе, используют принцип Ле Шателье (1844 г.):

Принцип Ле Шателье: Если на систему, находящуюся в состоянии равновесия, оказать внешнее воздействие (изменить t, р, С), то равновесие сместится в ту сторону, которая ослабит это воздействие .

Равновесие смещается:

1) при С реаг →,

при С прод ← ;

2) при p (для газов) - в сторону уменьшения объема,

при ↓ р – в сторону увеличения V;

если реакция протекает без изменения числа молекул газообразных веществ, то давление не влияет на равновесие в данной системе.

3) при t – в сторону эндотермической реакции (- Q),

при ↓ t – в сторону экзотермической реакции (+ Q).

Задача 3. Как надо изменить концентрации веществ, давление и температуру гомогенной системы PCl 5 ↔ PCl 3 + Cl 2 – Q , чтобы сместить равновесие в сторону разложения PCl 5 (→)

↓ С (PCl 3) и С (Cl 2)

Задача 4. Как сместиться химическое равновесие реакции 2СО + О 2 ↔ 2СО 2 + Q при

а) повышении температуры;

б) повышении давлении

1. Способ, смещающий равновесие реакции 2CuO(T) + CO Cu 2 O(T) + CO 2 вправо (→), - это:

1) увеличение концентрации угарного газа

2) увеличение концентрации углекислого газа

3) уменьшение концентрации оксида мели (I)

4) уменьшение концентрации оксида меди (II)

2. В гомогенной реакции 4HCl + O 2 2Cl 2 + 2H 2 O при повышении давления равновесие сместится:

2) вправо

3) не сместится

4) не знаю

8. При нагревании равновесие реакции N 2 + O 2 2NO – Q:

1) сместится вправо

2) сместится влево

3) не сместится

4) не знаю

9. При охлаждении равновесие реакции H 2 + S H 2 S + Q:

1) сместится влево

2) сместится вправо

3) не сместится

4) не знаю

  1. Классификация химических реакций в неорганической и органической химии

    Документ

    Задания А 19 (ЕГЭ 2012 г) Классификация химических реакций в неорганической и органической химии . К реакциям замещения относится взаимодействие: 1) пропена и воды, 2) ...

  2. Тематическое планирование уроков химии в 8-11 классах 6

    Тематическое планирование

    1 Химические реакции 11 11 Классификация химических реакций в неорганической химии . (С) 1 Классификация химических реакций в органической химии . (С) 1 Скорость химических реакций . Энергия активации. 1 Факторы, влияющие на скорость химических реакций ...

  3. Вопросы к экзаменам по химии для студентов 1 го курса ну(К)орк фо

    Документ

    Метана, применение метана. Классификация химических реакций в неорганической химии . Физические и химические свойства и применение этилена. Химическое равновесие и условия его...

  4. Темы кодификатора ЕГЭ: Классификация химических реакций в органической и неорганической химии.

    Химические реакции — это такой вид взаимодействия частиц, когда из одних химических веществ получаются другие, отличающиеся от них по свойствам и строению. Вещества, которые вступают в реакцию — реагенты . Вещества, которые образуются в ходе химической реакции — продукты .

    В ходе химической реакции разрушаются химические связи, и образуются новые.

    В ходе химических реакций не меняются атомы, участвующие в реакции. Меняется только порядок соединения атомов в молекулах. Таким образов, число атомов одного и того же вещества в ходе химической реакции не меняется .

    Химические реакции классифицируют по разным признакам. Рассмотрим основные виды классификации химических реакций.

    Классификация по числу и составу реагирующих веществ

    По составу и числу реагирующих веществ разделяют реакции, протекающие без изменения состава веществ, и реакции, протекающие с изменением состава веществ:

    1. Реакции, протекающие без изменения состава веществ (A → B)

    К таким реакциям в неорганической химии можно отнести аллотропные переходы простых веществ из одной модификации в другую:

    S ромбическая → S моноклинная.

    В органической химии к таким реакциям относятся реакции изомериза-ции , когда из одного изомера под действием катализатора и внешних факторов получается другой (как правило, структурный изомер).

    Например , изомеризация бутана в 2-метилпропан (изобутан):

    CH 3 -CH 2 -CH 2 -CH 3 → CH 3 -CH(CH 3)-CH 3 .

    2. Реакции, протекающие с изменением состава

    • Реакции соединения (A + B + … → D) — это такие реакции, в которых из двух и более веществ образуется одно новое сложное вещество. В неорганической химии к реакция соединения относятся реакции горения простых веществ, взаимодействие основных оксидов с кислотными и др. В органической химии такие реакции называются реакциями присоединения . Реакции присоединения это такие реакции, в ходе которых к рассматриваемой органической молекуле присоединяется другая молекула. К реакциям присоединения относятся реакции гидрирования (взаимодействие с водородом), гидратации (присоединение воды), гидрогалогенирования (присоединение галогеноводорода), полимеризация (присоединение молекул друг к другу с образованием длинной цепочки) и др.

    Например , гидратация:

    CH 2 =CH 2 + H 2 O → CH 3 -CH 2 -OH

    • Реакции разложения (A B + C + …) — это такие реакции, в ходе которых из одной сложной молекулы образуется несколько менее сложных или простых веществ. При этом могут образовываться как простые, так и сложные вещества.

    Например , при разложении пероксида водорода :

    2H 2 O 2 → 2H 2 O + O 2 .

    В органической химии разделяют собственно реакции разложения и реакции отщепления. Реакции отщепления (элиминирования) это такие реакции, в ходе которых происходит отрыв атомов или атомных групп от исходной молекулы при сохранении ее углеродного скелета.

    Например , реакция отщепления водорода (дегидрирование) от пропана :

    C 3 H 8 → C 3 H 6 + H 2

    Как правило, в названии таких реакций есть приставка «де». Реакции разложения в органической химии происходят, как правило, с разрывом углеродной цепи.

    Например , реакция крекинга бутана (расщепление на более простые молекулы при нагревании или под действием катализатора):

    C 4 H 10 → C 2 H 4 + C 2 H 6

    • Реакции замещения — это такие реакции, в ходе которых атомы или группы атомов одного вещества замещаются на атомы или группы атомов другого вещества. В неорганической химии эти реакции происходят по схеме:

    AB + C = AC + B .

    Например , более активные галогены вытесняют менее активные из соединений. Взаимодействие йодида калия с хлором :

    2KI + Cl 2 → 2KCl + I 2 .

    Замещаться могут как отдельные атомы, так и молекулы.

    Например , при сплавлении менее летучие оксиды вытесняют более летучие из солей. Так, нелетучий оксид кремния вытесняет оксид углерода из карбоната натрия при сплавлении:

    Na 2 CO 3 + SiO 2 → Na 2 SiO 3 + CO 2

    В органической химии реакции замещения — это такие реакции, в ходе которых часть органической молекулы замещается на другие частицы . При этом замещенная частица, как правило, соединяется с частью молекулы-заместителя.

    Например , реакция хлорирования метана :

    CH 4 + Cl 2 → CH 3 Cl + HCl

    По числу частиц и составу продуктов взаимодействия эта реакция больше похожа на реакцию обмена. Тем не менее, по механизму такая реакция является реакцией замещения.

    • Реакции обмена — это такие реакции, в ходе которых два сложных вещества обмениваются своими составными частями:

    AB + CD = AC + BD

    К реакциям обмена относятся реакции ионного обмена , протекающие в растворах; реакции, иллюстрирующие кислотно-основные свойства веществ и другие.

    Пример реакции обмена в неорганической химии — нейтрализация соляной кислоты щелочью :

    NaOH + HCl = NaCl + H 2 O

    Пример реакции обмена в органической химии — щелочной гидролиз хлорэтана :

    CH 3 -CH 2 -Cl + KOH = CH 3 -CH 2 -OH + KCl

    Классификация химических реакций по изменению степени окисления элементов, образующих вещества

    По изменению степени окисления элементов химические реакции делят на окислительно-восстановительные реакции , и реакции, идущие без изменения степеней окисления химических элементов.

    • Окислительно-восстановительные реакции (ОВР) — это реакции, в ходе которых степени окисления веществ изменяются . При этом происходит обмен электронами .

    В неорганической химии к таким реакциям относятся, как правило, реакции разложения, замещения, соединения, и все реакции, идущие с участием простых веществ. Для уравнивания ОВР используют метод электронного баланса (количество отданных электронов должно быть равно количеству полученных) или метод электронно-ионного баланса .

    В органической химии разделяют реакции окисления и восстановления, в зависимости от того, что происходит с органической молекулой.

    Реакции окисления в органической химии — это реакции, в ходе которых уменьшается число атомов водорода или увеличивается число атомов кислорода в исходной органической молекуле.

    Например , окисление этанола под действием оксида меди:

    CH 3 -CH 2 -OH + CuO → CH 3 -CH=O + H 2 O + Cu

    Реакции восстановления в органической химии — это реакции, в ходе которых увеличивается число атомов водорода или уменьшается число атомов кислорода в органической молекуле.

    Например , восстановление уксусного альдегида водородом :

    CH 3 -CH=O + H 2 → CH 3 -CH 2 -OH

    • Протолитические реакции и реакции обмена — это такие реакции, в ходе которые степени окисления атомов не изменяются.

    Например , нейтрализация едкого натра азотной кислотой :

    NaOH + HNO 3 = H 2 O + NaNO 3

    Классификация реакций по тепловому эффекту

    По тепловому эффекту реакции разделяют на экзотермические и эндотермические .

    Экзотермические реакции — это реакции, сопровождающиеся выделением энергии в форме теплоты (+Q ). К таким реакциям относятся почти все реакции соединения.

    Исключения — реакция азота с кислородом с образованием оксида азота (II) — эндотермическая:

    N 2 + O 2 = 2NO – Q

    Реакция газообразного водорода с твердым йодом также эндотермическая :

    H 2 + I 2 = 2HI – Q

    Экзотермические реакции, в ходе которых выделяется свет, называют реакциями горения .

    Например , горение метана:

    CH 4 + O 2 = CO 2 + H 2 O

    Также экзотермическими являются:


    Эндотермические реакции — это реакции, сопровождающиеся поглощением энергии в форме теплоты (— Q ). Как правило, с поглощением теплоты идет большинство реакций разложения (реакции, требующие длительного нагревания).

    Например , разложение известняка :

    CaCO 3 → CaO + CO 2 – Q

    Также эндотермическими являются:

    • реакции гидролиза ;
    • реакции, идущие только при нагревании ;
    • реакции, протекающие только при очень высоких температурах или под действием электрического разряда.

    Например , превращение кислорода в озон:

    3O 2 = 2O 3 — Q

    В органической химии с поглощением теплоты идут реакции разложения. Например , крекинг пентана :

    C 5 H 12 → C 3 H 6 + C 2 H 6 – Q .

    Классификация химических реакций по агрегатному состоянию реагирующих веществ (по фазовому составу)

    Вещества могут существовать в трех основных агрегатных состояниях — твердом , жидком и газообразном . По фазовому состоянию разделяют реакции гомогенные и гетерогенные .

    • Гомогенные реакции — это такие реакции, в которых реагирующие вещества и продукты находятся в одной фазе , и столкновение реагирующих частиц происходит во всем объеме реакционной смеси. К гомогенным реакциям относят взаимодействия жидкость-жидкость и газ-газ .

    Например , окисление сернистого газа :

    2SO 2(г) + O 2(г) = 2SO 3(г)

    • Гетерогенные реакции — это реакции, в которых реагирующие вещества и продукты находятся в разных фазах . При этом столкновение реагирующих частиц происходит только на границе соприкосновения фаз . К таким реакциям относятся взаимодействия газ-жидкость, газ-твердая фаза, твердая-твердая, и твердая фаза — жидкость .

    Например , взаимодействие углекислого газа и гидроксида кальция :

    CO 2(г) + Ca(OH) 2(р-р) = CaCO 3(тв) + H 2 O

    Для классификации реакций по фазовому состоянию полезно уметь определять фазовые состояния веществ . Это достаточно легко сделать, используя знания о строении вещества, в частности, о .

    Вещества с ионной , атомной или металлической кристаллической решеткой , как правило твердые при обычных условиях; вещества с молекулярной решеткой , как правило, жидкости или газы при обычных условиях.

    Обратите внимание, что при нагревании или охлаждении вещества могут переходить из одного фазового состояния в другое. В таком случае необходимо ориентироваться на условия проведения конкретной реакции и физические свойства вещества.

    Например , получение синтез-газа происходит при очень высоких температурах, при которых вода — пар:

    CH 4(г) + H2O (г) = CO (г) + 3H 2(г)

    Таким образом, паровая конверсия метана гомогенная реакция .

    Классификация химических реакций по участию катализатора

    Катализатор — это такое вещество, которое ускоряет реакцию, но не входит в состав продуктов реакции. Катализатор участвует в реакции, но практичсеки не расходуется в ходе реакции. Условно схему действия катализатора К при взаимодействии веществ A + B можно изобразить так: A + K = AK; AK + B = AB + K.

    В зависимости от наличия катализатора различают каталитические и некаталитические реакции.

    • Каталитические реакции — это реакции, которые идут с участием катализаторов. Например, разложение бертолетовой соли: 2KClO 3 → 2KCl + 3O 2 .
    • Некаталитические реакции — это реакции, которые идут без участия катализатора. Например, горение этана: 2C 2 H 6 + 5O 2 = 2CO 2 + 6H 2 O.

    Все реакции, протекающие с участием в клетках живых организмов, протекают с участием особых белковых катализаторов — ферментов. Такие реакции называют ферментативными.

    Более подробно механизм действия и функции катализаторов рассматриваются в отдельной статье.

    Классификация реакций по направлению

    Обратимые реакции — это реакции, которые могут протекать и в прямом, и в и обратном направлении, т.е. когда при данных условиях продукты реакции могут взаимодействовать друг с другом. К обратимым реакциям относятся большинство гомогенных реакций, этерификация; реакции гидролиза; гидрирование-дегидрирование, гидратация-дегидратация; получение аммиака из простых веществ, окисление сернистого газа, получение галогеноводородов (кроме фтороводорода) и сероводорода; синтез метанола; получение и разложение карбонатов и гидрокарбонатов, и т.д.

    Необратимые реакции — это реакции, которые протекают преимущественно в одном направлении, т.е. продукты реакции не могут взаимодействовать друг сдругом при данных условиях. Примеры необратимых реакций: горение; реакции, идущие со взрывом; реакции, идущие с образованием газа, осадка или воды в растворах; растворение щелочных металлов в воде; и др.

    Химические реакции – это процессы, в результате которых из одних веществ образуются другие, отличающиеся от них по составу и (или) строению.

    Классификация реакций:

    I. По числу и составу реагирующих веществ и продуктов реакции:

    1) Реакции, идущие без изменения состава вещества:

    В неорганической химии это реакции превращения одних аллотропных модификаций в другие:

    C (графит) → C (алмаз); P (белый) → P (красный).

    В органической химии это реакции изомеризации – реакции, в результате которых из молекул одного вещества образуются молекулы других веществ того же качественного и количественного состава, т.е. с той же молекулярной формулой, но другим строением.

    СН 2 -СН 2 -СН 3 → СН 3 -СН-СН 3

    н-бутан 2-метилпропан (изобутан)

    2) Реакции, идущие с изменением состава вещества:

    а) Реакции соединения (в органической химии присоединения) – реакции, в ходе которых из двух и более веществ образуется одно более сложное: S + O 2 → SO 2

    В органической химии это реакции гидрирования, галогенирования, гидрогалогенирования, гидратации, полимеризации.

    СН 2 = СН 2 + НОН → СН 3 – СН 2 ОН

    б) Реакции разложения (в органической химии отщепления, элиминирования) – реакции, в ходе которых из одного сложного вещества образуется несколько новых веществ:

    СН 3 – СН 2 ОН → СН 2 = СН 2 + Н 2 О

    2KNO 3 →2KNO 2 + O 2

    В органической химии примеры реакций отщепления - дегидрирование, дегидратация, дегидрогалогенирование, крекинг.

    в) Реакции замещения – реакции, в ходе которых атомы простого вещества замещают атомы какого-нибудь элемента в сложном веществе (в органической химии – реагентами и продуктами реакции часто являются два сложных вещества).

    CH 4 + Cl 2 → CH 3 Cl +HCl ; 2Na+ 2H 2 O→ 2NaOH + H 2

    Примеры реакций замещения, не сопровождающихся изменением степеней окисления атомов, крайне немногочисленны. Следует отметить реакцию оксида кремния с солями кислородсодержащих кислот, которым отвечают газообразные или летучие оксиды:

    СаСО 3 + SiO 2 = СаSiO 3 + СО 2

    Са 3 (РО 4) 2 + ЗSiO 2 = ЗСаSiO 3 + Р 2 О 5

    г) Реакции обмена – реакции, в ходе которых два сложных вещества обмениваются своими составными частями:

    NaOH + HCl → NaCl + H 2 O,
    2CH 3 COOH + CaCO 3 → (CH 3 COO) 2 Ca + CO 2 + H 2 O

    II. По изменению степеней окисления химических элементов, образующих вещества

    1) Реакции, идущие с изменением степеней окисления, или ОВР:

    ∙2| N +5 + 3e – → N +2 (процесс восстановления, элемент – окислитель),

    ∙3| Cu 0 – 2e – → Cu +2 (процесс окисления, элемент – восстановитель),



    8HNO 3 + 3Cu → 3Cu(NO 3) 2 + 2NO + 4H 2 O.

    В органической химии:

    C 2 H 4 + 2KMnO 4 + 2H 2 O → CH 2 OH–CH 2 OH + 2MnO 2 + 2KOH

    2) Реакции, идущие без изменения степеней окисления химических элементов:

    Li 2 O + H 2 O → 2LiOH,
    HCOOH + CH 3 OH → HCOOCH 3 + H 2 O

    III. По тепловому эффекту

    1) Экзотермические реакции протекают с выделением энергии:

    С + О 2 → СО 2 + Q,
    СH 4 + 2O 2 → CO 2 + 2H 2 O + Q

    2) Эндотермические реакции протекают с поглощением энергии:

    СaCO 3 → CaO + CO 2 - Q

    C 12 H 26 → C 6 H 14 + C 6 H 12 - Q

    IV. По агрегатному состоянию реагирующих веществ

    1) Гетерогенные реакции – реакции, в ходе которых реагирующие вещества и продукты реакции находятся в разных агрегатных состояниях:

    Fe(тв) + CuSO 4 (р-р) → Cu(тв) + FeSO 4 (р-р),
    CaC 2 (тв) + 2H 2 O(ж) → Ca(OH) 2 (р-р) + C 2 H 2 (г)

    2) Гомогенные реакции – реакции, в ходе которых реагирующие вещества и продукты реакции находятся в одном агрегатном состоянии:

    H 2 (г) + Cl 2 (г) → 2HCl(г),
    2C 2 H 2 (г) + 5O 2 (г) → 4CO 2 (г) + 2H 2 O(г)

    V. По участию катализатора

    1) Некаталитические реакции, идущие без участия катализатора:

    2Н 2 + О 2 → 2Н 2 О, С 2 Н 4 + 3О 2 → 2СО 2 + 2Н 2 О

    2) Каталитические реакции, идущие с участием катализаторов:

    2H 2 O 2 → 2H 2 O + O 2

    VI. По направлению

    1) Необратимые реакции протекают в данных условиях только в одном направлении:

    С 2 Н 4 + 3О 2 → 2СО 2 + 2Н 2 О

    2) Обратимые реакции в данных условиях протекают одновременно в двух противоположных направлениях: N 2 + 3H 2 ↔2NH 3



    VII. По механизму протекания

    1) Радикальный механизм.

    А: В → А· + ·В

    Происходит гомолитический (равноценный) разрыв связи. При гемолитическом разрыве пара электронов, образующая связь, делится таким образом, что каждая из образующихся частиц получает по одному электрону. При этом образуются радикалы – незаряженные частицы с неспаренными электрономи. Радикалы – очень реакционноспособные частицы, реакции с их участием происходят в газовой фазе с большой скоростью и часто со взрывом.

    Радикальные реакции идут между образующимися в ходе реакции радикалами и молекулами:

    2H 2 O 2 → 2H 2 O + O 2

    CH 4 + Cl 2 → CH 3 Cl +HCl

    Примеры: реакции горения органических и неорганических веществ, синтез воды, аммиака, реакции галогенирования и нитрования алканов, изомеризация и ароматизация алканов, каталитическое окисление алканов, полимеризация алкенов, винилхлорида и др.

    2) Ионный механизм.

    А: В → :А - + В +

    Происходит гетеролитический (неравноценный) разрыв связи, при этом оба электрона связи остают­ся с одной из ранее связанных частиц. Образуются заряженные частиц (катионы и анионы).

    Ионные реакции идут в растворах между уже имеющимися или образующимися в ходе реакции ионами.

    Например, в неорганической химии – это взаимодействие электролитов в растворе, в органической химии – это реакции присоединения к алкенам, окисление и дегидрирование спиртов, замещение спиртовой группы и другие реакции, характеризующие свойства альдегидов и карбоновых кислот.

    VIII. По виду энергии, инициирующей реакцию:

    1) Фотохимические реакции происходят при воздействии квантов света. Например, синтез хлороводорода, взаимодействие метана с хлором, получение озона в природе, процессы фотосинтеза и др.

    2) Радиационные реакции инициируются излучениями больших энергий (рентгеновскими лучами, γ-лучами).

    3) Электрохимические реакции инициирует электрический ток, например, при электролизе.

    4) Термохимические реакции инициируются тепловой энергией. К ним относятся все эндотермические реакции и множество экзотермических, для инициации которых необходима теплота.

    Неорганическая химия - раздел химии, связанный с изучением строения, реакционной способности и свойств всех химических элементов и их неорганических соединений. Это область охватывает все химические соединения, за исключением органических веществ (класса соединений, в которые входит углерод, за исключением нескольких простейших соединений, обычно относящихся к неорганическим). Различие между органическими и неорганическими соединениями, содержащими углерод, являются по некоторым представлениям произвольными.Неорганическая химия изучает химические элементы и образуемые ими простые и сложные вещества (кроме органических соединений). Обеспечивает создание материалов новейшей техники. Число известных на 2013 г. неорганических веществ приближается к 400 тысячам.

    Теоретическим фундаментом неорганической химии является периодический закон и основанная на нём периодическая система Д. И. Менделеева. Важнейшая задача неорганической химии состоит в разработке и научном обосновании способов создания новых материалов с нужными для современной техники свойствами.

    В России исследованиями в области неорганической химии занимаются Институт неорганической химии им. А. В. Николаева СО РАН (ИНХ СО РАН, Новосибирск), Институт общей и неорганической химии им. Н. С. Курнакова (ИОНХ РАН, Москва), Институт физико-химических проблем керамических материалов (ИФХПКМ, Москва), Научно-технический центр «Сверхтвердые материалы» (НТЦ СМ, Троицк) и ряд других учреждений. Результаты исследований публикуются в журналах («Журнал неорганической химии» и др.).

    История определения

    Исторически название неорганическая химия происходит от представления о части химии, которая занимается исследованием элементов, соединений, а также реакций веществ, которые не образованы живыми существами. Однако со времен синтеза мочевины из неорганического соединения цианата аммония (NH 4 OCN), который совершил в 1828 году выдающийся немецкий химик Фридрих Вёлер, стираются границы между веществами неживой и живой природы. Так, живые существа производят много неорганических веществ. С другой стороны, почти все органические соединения можно синтезировать в лаборатории. Однако деление на различные области химии является актуальным и необходимым, как и раньше, поскольку механизмы реакций, структура веществ в неорганической и органической химии различаются. Это позволяет проще систематизировать методы и способы исследования в каждой из отраслей.

    Оксиды

    Оксид (окисел, окись) - бинарное соединение химического элемента с кислородом в степени окисления −2, в котором сам кислород связан только с менее электроотрицательным элементом. Химический элемент кислород по электроотрицательности второй после фтора, поэтому к оксидам относятся почти все соединения химических элементов с кислородом. К исключениям относятся, например, дифторид кислорода OF 2 .

    Оксиды - весьма распространённый тип соединений, содержащихся в земной коре и во Вселенной вообще. Примерами таких соединений являются ржавчина, вода, песок, углекислый газ, ряд красителей.

    Оксидами называется класс минералов, представляющих собой соединения металла с кислородом.

    Соединения, которые содержат атомы кислорода, соединённые между собой, называются пероксидами (перекисями; содержат цепочку −O−O−), супероксидами (содержат группу О−2) и озонидами (содержат группу О−3). Они не относятся к категории оксидов.

    Классификация

    В зависимости от химических свойств различают:

    Солеобразующие оксиды:

    основные оксиды (например, оксид натрия Na 2 O, оксид меди(II) CuO): оксиды металлов, степень окисления которых I-II;

    кислотные оксиды (например, оксид серы(VI) SO 3 , оксид азота(IV) NO 2): оксиды металлов со степенью окисления V-VII и оксиды неметаллов;

    амфотерные оксиды (например, оксид цинка ZnO, оксид алюминия Al 2 О 3): оксиды металлов со степенью окисления III-IV и исключения (ZnO, BeO, SnO, PbO);

    Несолеобразующие оксиды: оксид углерода(II) СО, оксид азота(I) N 2 O, оксид азота(II) NO.

    Номенклатура

    В соответствии с номенклатурой ИЮПАК, оксиды называют словом «оксид», после которого следует наименование химического элемента в родительном падеже, например: Na 2 O - оксид натрия, Al 2 O 3 - оксид алюминия. Если элемент имеет переменную степень окисления, то в названии оксида указывается его степень окисления римской цифрой в скобках сразу после названия (без пробела). Например, Cu 2 О - оксид меди(I), CuO - оксид меди(II), FeO - оксид железа(II), Fe 2 О 3 - оксид железа(III), Cl 2 O 7 - оксид хлора(VII).

    Часто используют и другие наименования оксидов по числу атомов кислорода: если оксид содержит только один атом кислорода, то его называют монооксидом или моноокисью, если два - диоксидом или двуокисью, если три - то триоксидом или триокисью и т. д. Например: монооксид углерода CO, диоксид углерода СО 2 , триоксид серы SO 3 .

    Также распространены исторически сложившиеся (тривиальные) названия оксидов, например угарный газ CO, серный ангидрид SO 3 и т. д.

    В начале XIX века и ранее тугоплавкие, практически не растворимые в воде оксиды химики называли «землями».

    Оксиды с низшими степенями окисления (субоксиды) иногда по старой русской номенклатуре называют закись (англ. аналог - protoxide) и недокись (например, оксид углерода(II), CO - закись углерода; диоксид триуглерода, C 3 O 2 - недокись углерода; оксид азота(I), N 2 O - закись азота; оксид меди(I), Cu 2 O - закись меди). Высшие степени окисления (оксид железа(III), Fe2O3) называют в соответствии с этой номенклатурой окись, а сложные оксиды - закись-окись (Fe 3 O 4 = FeO·Fe 2 O 3 - закись-окись железа, оксид урана(VI)-диурана(V), U 3 O 8 - закись-окись урана). Эта номенклатура, однако, не отличается последовательностью, поэтому такие названия следует рассматривать скорее как традиционные.

    Химические свойства

    Основные оксиды

    1. Основный оксид + cильная кислота → соль + вода

    2. Сильноосновный оксид + вода → щелочь

    3. Сильноосновный оксид + кислотный оксид → соль

    4. Основный оксид + водород → металл + вода

    Примечание: металл менее активный, чем алюминий.

    Кислотные оксиды

    1. Кислотный оксид + вода → кислота

    Некоторые оксиды, например SiO 2 , с водой не вступают в реакцию, поэтому их кислоты получают косвенным путём.

    2. Кислотный оксид + основный оксид → соль

    3. Кислотный оксид + основание → соль + вода

    Если кислотный оксид является ангидридом многоосновной кислоты, возможно образование кислых или средних солей:

    4. Нелетучий оксид + соль1 → соль2 + летучий оксид

    5. Ангидрид кислоты 1 + безводная кислородосодержащая кислота 2 → Ангидрид кислоты 2 + безводная кислородосодержащая кислота 1

    Амфотерные оксиды

    При взаимодействии с сильной кислотой или кислотным оксидом проявляют основные свойства:

    При взаимодействии с сильным основанием или основным оксидом проявляют кислотные свойства:

    (в водном растворе)

    (при сплавлении)

    Получение

    1. Взаимодействие простых веществ (за исключением инертных газов, золота и платины) с кислородом:

    При горении в кислороде щелочных металлов (кроме лития), а также стронция и бария образуются пероксиды и надпероксиды:

    2. Обжиг или горение бинарных соединений в кислороде:

    3. Термическое разложение солей:

    4. Термическое разложение оснований или кислот:

    5. Окисление низших оксидов в высшие и восстановление высших в низшие:

    6. Взаимодействие некоторых металлов с водой при высокой температуре:

    7. Взаимодействие солей с кислотными оксидами при сжигании кокса с выделением летучего оксида:

    8. Взаимодействие металлов с кислотами-оксилителями:

    9. При действии водоотнимающих веществ на кислоты и соли:

    10. Взаимодействие солей слабых неустойчивых кислот с более сильными кислотами:

    Соли

    Соли - класс химических соединений, состоящих из катионов и анионов.


    В роли катионов в солях могут выступать катион металлов, ониевые катионы


    (катионов аммония, фосфония, гидроксония и их органические производные),


    комплексные катионы и т.д., в качестве анионов - анионы кислотного остатка различных кислот Бренстеда - как неорганических, так и органических, включая карбанионы, комплексные анионы и т.п.

    Типы солей

    Особую группу составляют соли органических кислот, свойства которых значительно отличаются от свойств минеральных солей. Некоторые из них можно отнести к особенному классу органических солей, так называемых ионных жидкостей или по-другому «жидких солей», органических солей с температурой плавления ниже 100 °C.

    Названия солей

    Названия солей образуются из двух слов: название аниона в именительном падеже и название катиона в родительном падеже: - сульфат натрия. Для металлов с переменной степенью окисления её указывают в скобках и без пробела: - сульфат железа(II), - сульфат железа(III).

    Названия кислых солей начинаются с приставки «гидро-» (если в соли присутствует один атом водорода) или «дигидро-» (если их два). Например, - гидрокарбонат натрия, - дигидрофосфат натрия.

    Названия основных солей содержат приставку «гидроксо-» или «дигидроксо-». Например, - хлорид гидроксомагния, - хлорид дигидроксоалюминия.

    В гидратных солях на наличие кристаллической воды указывает приставка «гидрат-». Степень гидратации отражают численной приставкой. Например, - дигидрат хлорида кальция.

    На низшую степень окисления кислотообразующего элемента (если степеней окисления больше двух) указывает приставка «гипо-». Приставка «пер-» указывает на высшую степень окисления (для солей кислот с окончаниями «-овая», «-евая», «-ная»). Например: - гипохлорит натрия, - хлорит натрия, - хлорат натрия, - перхлорат натрия.

    Методы получения

    Существуют различные методы получения солей:

    1)Взаимодействие кислот с металлами, основными и амфотерными оксидами / гидроксидами:

    2)Взаимодействие кислотных оксидов c щелочами, основными и амфотерными оксидами / гидроксидами:

    3)Взаимодействие солей c кислотами, другими солями (если образуется выходящий из сферы реакции продукт):

    Взаимодействие простых веществ:

    Взаимодействие оснований с неметаллами, например, с галогенами:

    Химические свойства

    Химические свойства определяются свойствами катионов и анионов, входящих в их состав.

    Соли взаимодействуют с кислотами и основаниями, если в результате реакции получается продукт, который выходит из сферы реакции (осадок, газ, мало диссоциирующие вещества, например, вода или другие оксиды):

    Соли взаимодействуют с металлами, если свободный металл находится левее металла в составе соли в электрохимическом ряде активности металлов:

    Соли взаимодействуют между собой, если продукт реакции выходит из сферы реакции (образуется газ, осадок или вода); в том числе эти реакции могут проходить с изменением степеней окисления атомов реагентов:

    Некоторые соли разлагаются при нагревании:

    Основание

    Основания - класс химических соединений.

    Основания (осно́вные гидрокси́ды) - сложные вещества, которые состоят из атомов металла или иона аммония и гидроксогруппы (-OH). В водном растворе диссоциируют с образованием катионов и анионов ОН−.

    Название основания обычно состоит из двух слов: «гидроксид металла/аммония». Хорошо растворимые в воде основания называются щелочами.

    Согласно протонной теории кислот и оснований, основания - один из основных классов химических соединений, вещества, молекулы которых являются

    акцепторами протонов.

    В органической химии по традиции основаниями называют также вещества, способные давать аддукты («соли») с сильными кислотами, например, многие алкалоиды описывают как в форме «алкалоид-основание», так и в виде «солей алкалоидов».

    Понятие основания в химию было впервые введено французским химиком Гийомом Франсуа Руэлем в 1754 году. Он отметил, что кислоты, известные в те времена как летучие жидкости (например, уксусная или соляная кислоты), превращаются в кристаллические соли только в сочетании с конкретными веществами. Руэль предположил, что такие вещества служат «основаниями» для образования солей в твёрдой форме.

    Получение

    Взаимодействие сильноосновного оксида с водой позволяет получить сильное основание или щёлочь.

    Слабоосновные и амфотерные оксиды с водой не реагируют, поэтому соответствующие им гидроксиды таким способом получить нельзя.

    Гидроксиды малоактивных металлов получают при добавлении щелочи к растворам соответствующих солей. Так как растворимость слабоосновных гидроксидов в воде очень мала, гидроксид выпадает из раствора в виде студнеобразной массы.

    Также основание можно получить при взаимодействии щелочного или щелочноземельного металла с водой.