Высокоточные атомные часы, которые совершают ошибку в одну секунду за 300 миллионов лет. Эти часы, заменившие старую модель, которая допускала ошибку в одну секунду за сто миллионов лет, теперь задают стандарт американского гражданского времени. «Лента.ру» решила вспомнить историю создания атомных часов.

Первый атом

Для того чтобы создать часы, достаточно использовать любой периодический процесс. И история появления приборов измерения времени ─ это отчасти история появления либо новых источников энергии, либо новых колебательных систем, используемых в часах. Самыми простыми часами являются, вероятно, солнечные: для их работы необходимо только Солнце и предмет, который отбрасывает тень. Недостатки этого способа определения времени очевидны. Водяные и песочные часы тоже не лучше: они пригодны лишь для измерения сравнительно коротких промежутков времени.

Самые древние механические часы были найдены в 1901 году рядом с островом Антикитера на затонувшем корабле в Эгейском море. Они содержат около 30 бронзовых шестерен в деревянном корпусе размером 33 на 18 на 10 сантиметров и датируются примерно сотым годом до нашей эры.

В течение почти двух тысяч лет механические часы были самыми точными и надежными. Появление в 1657 году классического труда Христиана Гюйгенса «Маятниковые часы» («Horologium oscillatorium, sive de motu pendulorum an horologia aptato demonstrationes geometrica») с описанием устройства отсчета времени с маятником в качестве колебательной системы, стало, вероятно, апогеем в истории развития механических приборов такого типа.

Однако астрономы и мореплаватели все равно использовали звездное небо и карты для определения своего местоположения и точного времени. Первые же электрические часы изобрел в 1814 году Фрэнсис Роналдс . Однако первый такой прибор был неточным из-за чувствительности к изменениям температуры.

Дальнейшая история часов связана с использованием в устройствах разных колебательных систем. Представленные в 1927 году сотрудниками Лабораторий Белла кварцевые часы использовали пьезоэлектрические свойства кристалла кварца: при воздействии на него электрического тока кристалл начинает сжиматься. Современные кварцевые хронометры могут обеспечить точность до 0,3 секунды в месяц. Однако, поскольку кварц подвержен старению, с течением времени часы начинают идти с меньшей точностью.

С развитием атомной физики ученые предложили использовать в качестве колебательных систем именно частицы вещества. Так появились первые атомные часы. Идею о возможности использования атомных колебаний водорода для измерения времени предложил еще в 1879 году английский физик лорд Кельвин , однако только к середине XX века это стало возможным.

Репродукция картины Губерта фон Геркомера (1907)

В 1930-х годах американский физик и первооткрыватель ядерного магнитного резонанса Исидор Раби начал работать над атомными часами с цезием-133, однако начало войны помешало ему. Уже после войны в 1949 году в Национальном комитете стандартов США с участием Гарольда Лайонсона были созданы первые молекулярные часы, использующие молекулы аммиака. Но первые такие приборы измерения времени не были точными, как современные атомные часы.

Относительно малая точность была связана с тем, что из-за взаимодействия молекул аммиака между собой и со стенками емкости, в которой находилось это вещество, изменялась энергия молекул, и их спектральные линии уширялись. Этот эффект очень похож на трение в механических часах.

Позднее, в 1955 году, Луи Эсссен из Национальной физической лаборатории Великобритании представил первые атомные часы на цезии-133. Эти часы накапливали ошибку в одну секунду за миллион лет. Прибор получил название NBS-1 и стал считаться цезиевым эталоном частоты.

Принципиальная схема атомных часов состоит из кварцевого генератора, контролируемого дискриминатором по схеме обратной связи. В генераторе используются пьезоэлектрические свойства кварца, тогда как в дискриминаторе происходят энергетические колебания атомов, так что колебания кварца отслеживаются сигналами от переходов с разных энергетических уровней в атомах или молекулах. Между генератором и дискриминатором находится компенсатор, настроенный на частоту атомных колебаний и сравнивающий ее с частотой колебаний кристалла.

Атомы, используемые в часах, должны обеспечивать стабильные колебания. Для каждой частоты электромагнитного излучения существуют свои атомы: кальция, стронция, рубидия, цезия, водорода. Или даже молекулы аммиака и йода.

Эталон времени

С появлением атомных приборов измерения времени стало возможным использовать их в качестве универсального эталона для определения секунды. С 1884 года Гринвичское время, считавшееся мировым стандартом, уступило место эталону атомных часов. В 1967 году решением 12-й Генеральной конференции мер и весов одну секунду определили как продолжительность 9192631770 периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133. Такое определение секунды не зависит от астрономических параметров и может воспроизводиться в любой точке планеты. Цезий-133, используемый в эталоне атомных часов, ─ единственный стабильный изотоп цезия со 100-процентной распространенностью на Земле.

Атомные часы используются и в спутниковой системе навигации; они необходимы для определения точного времени и координат спутника. Так, в каждом спутнике системы GPS установлены по четыре комплекта таких часов: два рубидиевых и два цезиевых, которые обеспечивают точность передачи сигнала в 50 наносекунд. На российских спутниках системы ГЛОНАСС тоже установлены цезиевые и рубидиевые атомные приборы измерения времени, а на спутниках разворачивающейся европейской геопозиционной системы Galileo ─ водородные и рубидиевые.

Точность водородных часов ─ самая высокая. Она составляет 0,45 наносекунды за 12 часов. По всей видимости, использование Galileo таких точных часов выведет эту навигационную систему в лидеры уже в 2015 году, когда на орбите будет 18 ее спутников.

Компактные атомные часы

Hewlett-Packard стала первой компанией, которая занялась разработкой компактных атомных часов. В 1964 году ею был создан цезиевый прибор HP 5060A размером с большой чемодан. Компания и дальше развивала это направление, но с 2005 года продала свое подразделение, разрабатывающее атомные часы, компании Symmetricom.

В 2011 году специалисты Лаборатории Дрейпера и Сандийских национальных лабораторий разработали, а компания Symmetricom выпустила первые миниатюрные атомные часы Quantum. На момент выпуска они стоили порядка 15 тысяч долларов, были заключены в герметичный корпус размером 40 на 35 на 11 миллиметров и весили 35 граммов. Потребляемая мощность часов составляла менее 120 милливатт. Первоначально они были разработаны по заказу Пентагона и предназначались для обслуживания навигационных систем, функционирующих независимо от систем GPS, например, глубоко под водой или землей.

Уже в конце 2013 года американская компания Bathys Hawaii представила первые «наручные» атомные часы. В качестве основного компонента в них используется чип SA.45s производства компании Symmetricom. Внутри чипа располагается капсула с цезием-133. В конструкцию часов также входят фотоэлементы и маломощный лазер. Последний обеспечивает нагревание газообразного цезия, в результате чего его атомы начинают переходить с одного энергетического уровня на другой. Измерение времени как раз и производится за счет фиксирования такого перехода. Стоимость нового прибора составляет около 12 тысяч долларов.

Тенденции к миниатюризации, автономности и точности приведут к тому, что уже в недалеком будущем появятся новые устройства с использованием атомных часов во всех сферах человеческой жизни, начиная с космических исследований на орбитальных спутниках и станциях до бытового применениях в комнатных и наручных системах.

МОСКВА, 27 окт — РИА Новости, Ольга Коленцова. Что такое время? Режиссеры фантастических фильмов считают, что это некое измерение, по которому можно передвигаться. В реальном мире время определяется положением предметов в пространстве. Теоретически, если мы сможем вернуть каждую частицу во Вселенной в состояние и положение, в котором она находилась в определенный момент, то совершим путешествие в прошлое.

Итак, пока наши знания дают возможность определять время в зависимости от механических изменений, происходящих в мире. Например, один полный оборот Земли вокруг своей оси определяет день, а вокруг Солнца — год. Но у людей появилась необходимость разбить сутки на более маленькие и четко определяемые отрезки — часы, минуты, секунды.

Для отсчета этих единиц люди придумали особые устройства — часы. Их история длится века, а вместе с технологиями растут и требования к точности измерения времени. Если в быту мы отлично обходимся механическими и электронными часами, то наука требует куда более точных приборов.

Основой для подсчета времени служит некое повторяемое событие, когда объект возвращается в начальное состояние через строго определенный промежуток времени. Например, в механических часах крутятся шестеренки (или качается маятник), а в песочных часах наступает момент, когда все песчинки падают на дно сосуда.

Конечно, современные электронные и механические часы намного точнее их предшественников — водных, песочных и солнечных. Но а некоторых областях требовались еще более точные механизмы. И люди создали часы, работающие на основе процессов, происходящих внутри атома.

Как известно, атом состоит из ядра и электронного облака. Электроны располагаются на разных энергетических уровнях. Чем дальше электрон от ядра, тем большей энергией он обладает. Представьте собаку, привязанную к стальной балке прочным, но растяжимым поводком. Чем дальше она хочет отойти, тем сильнее ей надо натянуть поводок. Конечно, сильная крупная собака сможет отойти дальше, чем маленькая и слабая.

© AP Photo / Focke Strangmann

© AP Photo / Focke Strangmann

При переходе на уровень ниже электрон испускает энергию, а при переходе на более высокий уровень — поглощает. "Прыжками" электронов можно управлять при помощи электромагнитного излучения, являющегося источником энергии. Излучение имеет определенную частоту. Эта величина обратна периоду колебания, то есть времени, необходимому для возвращения совершающего "замкнутые" движения объекта в первоначальное состояние.

Для атомных часов используют кальций, водород, тулий, стронций, рубидий, торий, йод и метан, а чаще всего — цезий. Электроны в атомных часах на основе цезия-133 при переходе с одного энергетического уровня на другой испускают электромагнитное излучение с частотой 9 192 631 770 Гц. Именно на такое число промежутков делится секунда в этих природных часах. Согласно определению, официально принятому еще в 1967 году на Генеральной конференции по мерам и весам, атом цезия-133 признан стандартом для измерений времени. От точности секунды зависит подлинность других основных единиц физических величин, таких как, например, вольт или ватт, которые определяются через время.


Работают сверхточные часы так: цезий-133 нагревают, и некоторые атомы покидают основное вещество, а затем проходят через магнитное поле, которое отсеивает атомы с нужными энергетическими состояниями. Отобранные атомы проходят через магнитное поле с частотой, близкой к частоте электромагнитного излучения при переходе электрона с одного уровня на другой в цезии-133. Под воздействием поля атомы меняют энергетические состояния и попадают на детектор, который фиксирует момент, когда нужным энергетическим состоянием будет обладать наибольшее количество атомов. Тогда значение частоты электромагнитного поля подается в делитель частоты, определяющий свою единицу посредством деления секунды. Получается "новая секунда", принимаемая за эталон минимальной единицы времени.

© Иллюстрация РИА Новости. Алина Полянина


Атомные часы представляют собой прибор для очень точного измерения времени. Название они получили от принципа их работы, так как в качестве периода используются собственные колебания молекул или атомов. Атомные часы получили очень большое применение в навигации, в космической отрасли, для определения местоположения спутников, в военной сфере, для обнаружения , самолетов, а также в телекоммуникациях.

Сфер применения, как видно очень много, но зачем им всем нужна такая точность, ведь сегодня погрешность обычных атомных часов составляет всего 1 секунду в 30 миллионов лет? А ведь есть и еще точнее. Все объяснимо, ведь время используется для расчета расстояний, а там небольшая погрешность может привести к сотням метров, а то и километрам, если брать космические расстояния. Например, возьмем американскую систему навигации GPS, при использовании в приемнике обычных электронных часов, погрешность измерения координат будет достаточно существенна, что может повлиять на все остальные расчеты, а это может привести к последствиям, если речь идет о космических технологиях. Естественно для приемников GPS в мобильных устройствах и других гаджетах, большая точность совсем не важна.

Самое точное время в Москве и мире, можно узнать на официальном сайте - "сервере точного текущего времени" www.timeserver.ru

Из чего состоят атомные часы

Атомные часы состоят из нескольких главных частей: кварцевого генератора, квантового дискриминатора и блоков электроники. Основным, задающим отсчет, является кварцевый генератор, который строится на кристаллах кварца и выдает, как правило, стандартную частоту в 10, 5, 2.5 МГц. Так как стабильная работа кварца без погрешности довольно мала, его необходимо постоянно подстраивать.

Квантовый дискриминатор фиксирует частоту атомной линии, и она в частотно-фазовом компараторе сравнивается с частотой кварцевого генератора. Компаратор имеет обратную связь с кварцевым генератором для его подстройки, в случае несовпадения частот.
Атомные часы можно построить не на всех атомах. Наиболее оптимальным является атом цезия. Он относится к первичному, по которому сравниваются все другие подходящие материалы, например такие как: стронций, рубидий, кальций. Первичный стандарт является абсолютно подходящим для измерения точного времени, поэтому он и получил название первичный.

Самые точные атомные часы в мире

На сегодняшний день самые точные атомные часы находятся в Великобритании (официально принятые). Их погрешность составляет всего 1 секунда в 138 миллионов лет. Они являются эталоном для национальных стандартов времени многих стран, в том числе и США, а также определяют международное атомное время. Но в королевстве находятся не самые точные часы на Земле.

самые точные атомные часы фото

В США заявили, что разработали экспериментальный тип точных часов на атомах цезия, их погрешность составила 1 секунда в почти 1,5 миллиарда лет. Наука в этой области не стоит на месте и развивается бурными темпами.

Атомные часы January 27th, 2016

Родиной первых в мире карманных часов со встроенным атомным стандартом времени станет не Швейцария и даже не Япония. Идея их создания зародилась в самом сердце Великобритании у лондонской марки Hoptroff

Атомные или как их ещё называют «квантовые часы» - это устройство, которое измеряет время, используя для этого собственные колебания, связанные с процессами, происходящими на уровне атомов или молекул. Ричард Хоптроф (Richard Hoptroff) решил, что современным джентльменам, которые проявляют интерес к сверхтехнологичным устройствам, пора бы сменить свои карманные механические часы на нечто более экстравагантное и неординарное, а также отвечающее современным урбанистическим тенденциям.

Так, публике были продемонстрированы элегантные по своему внешнему виду карманные атомные часы Hoptroff No. 10, которые могут удивить современное искушённое обилием гаджетов поколение не только своим ретро-стилем и фантастической точностью хода, но и сроком эксплуатации. По заявлению разработчиков, имея при себе эти часы, вы сможете оставаться самым пунктуальным человеком на протяжении не менее 5 млрд лет.

Что еще можно узнать о них интересного …

Фото 2.

Для всех тех, кто никогда не интересовался подобными часами, стоит вкратце рассказать принцип их действия. Внутри «атомного устройства» нет ничего, что напоминало бы классические механические часы. В Hoptroff No. 10 отсутствуют механические детали как таковые. Вместо этого карманные атомные часы оснащаются герметичной камерой, заполненной радиоактивным газообразным веществом, температура которого находится под контролем специальной печи. Точный отсчёт времени происходит следующим образом: лазеры возбуждают атомы химического элемента, являющегося своего рода «наполнителем» часов, а резонатор фиксирует и измеряет каждый атомный переход. Сегодня базовым элементом подобных устройств является цезий. Если вспомнить систему единиц СИ, то в ней значение секунды связно с количеством периодов электромагнитного излучения при переходе атомов цезия-133 с одного на другой энергетический уровень.

Фото 3.

Если в смартфонах сердцем устройства считается процессорный чип, то в Hoptroff No. 10 данную роль берёт на себя модуль-генератор эталонного времени. Его поставкой занимается фирма Symmetricom, а сам чип изначально был ориентирован на использование в военной отрасли - в беспилотных летательных аппаратах.

Атомные часы CSAC снабжены термостатом с регулированием температуры, внутри которого содержится камера с парами цезия. Под воздействием лазера на атомы цезия-133 начинается их переход из одного энергетического состояния в другое, для измерения которого используется СВЧ-резонатор. С 1967 года Международная система единиц (СИ) определяет одну секунду как 9 192 631 770 периодов электромагнитного излучения, возникающего при переходе между двумя сверхтонкими уровнями основного состояния атома цезия-133. Исходя из этого, сложно себе представить более точные с технической точки зрения часы на цезиевой основе. Со временем, учитывая последние достижения в области измерения времени, точность новых оптических часов на базе иона алюминия, пульсирующего с частотой ультрафиолетового излучения (в 100 000 раз превышающей микроволновые частоты цезиевых часов), в сотни раз превысит точность атомных хронометров. Выражаясь доступным языком, погрешность хода новой карманной модели No.10 от Hoptroff составляет 0,0015 секунды в год, что в 2,4 миллиона раз превышает стандарты COSC.

Фото 4.

Функциональная сторона устройства также на грани фантастики. С его помощью можно узнать: время, дату, день недели, год, широту и долготу в разных величинах, давление, влажность, звездные часы и минуты, прогноз приливов и многие другие показатели. Часы поставляются в золотом исполнении, а для создания их корпуса из драгоценного металла планируется использовать трехмерную печать.

Ричард Хоптроф искреннее полагает, что именно данный вариант производства своего детища является наиболее предпочтительным. Чтобы немного изменить дизайнерскую составляющую конструкции, вовсе не нужно будет перестраивать производственную линию, а использовать для этого функциональную гибкость печатающего 3D-устройства. Правда, стоит отметить, что показанный прототип часов был изготовлен классическим способом.

Фото 5.

Время нынче стоит очень дорого, а карманные часы Hoptroff No. 10 - тому прямое подтверждение. По предварительной информации, первая партия атомных устройств составит 12 единиц, а что касается стоимости, то цена за 1 экземпляр будет составлять $78 000.

Фото 6.

По словам Ричарда Хоптроффа, управляющего директора марки, лондонская прописка Hoptroff сыграла ключевую роль в возникновении этой идеи. “В своих кварцевых механизмах мы используем высокоточную колебательную систему с сигналом GPS. Но в центре Лондона не так-то просто поймать этот самый сигнал. Однажды во время поездки в Гринвичскую обсерваторию я увидел там атомные часы Hewlett Packard и решил приобрести себе нечто подобное через Интернет. И не смог. Вместо этого мне на глаза попалась информация о чипе компании Symmetricon, и после трех дней раздумий я понял, что он прекрасно подойдет для карманных часов”.

Чип, о котором идет речь, представляет собой цезиевые атомные часы SA.45s (CSAC), принадлежащие к первому поколению миниатюрных атомных часов для GPS-приемников, ранцевых радиостанций и беспилотных аппаратов. Несмотря на свои скромные габариты (40 мм х 34,75 мм), в наручные часы он все же вряд ли поместится. Поэтому Хоптрофф решил оснастить ими карманную модель довольно солидных размеров (82 мм в диаметре).

Помимо звания самых точных часов в мире, Hoptroff No 10 (десятый по счету механизм марки) претендует также на первый золотой корпус, изготовленный с использованием технологии 3D-печати. Хоптрофф пока не может с точностью сказать, сколько золота потребуется для изготовления корпуса (работа над первым прототипом завершилась, когда номер уже ушел в печать), но предполагает, что его стоимость составит “минимум несколько тысяч фунтов”. А учитывая весь тот объем научных исследований, потребовавшихся для разработки продукта (взять хотя бы функцию расчета приливов и отливов по гармоническим постоянным для 3 тыс. различных портов), можно ожидать, что его конечная розничная цена составит около 50 тыс. фунтов стерлингов.

Золотой корпус модели No 10 на выходе из 3D-принтера и в готовом виде

Покупатели автоматически становятся членами эксклюзивного клуба и должны будут подписать письменное обязательство не использовать чип атомных часов как оружие. “Это одно из условий нашего договора с поставщиком, - объясняет г-н Хоптрофф, - поскольку изначально атомный чип применялся в системах наведения ракет”. Не так уж много за возможность получить часы с безупречной точностью.

Счастливые обладатели No.10 от Hoptroff получат в свое распоряжение гораздо больше, чем просто высокоточные часы. Модель также выполняет функцию карманного навигационного устройства, позволяющего определить долготу с точностью до одной морской мили даже после многолетнего пребывания в море при помощи простого секстанта. Модель получит два циферблата, однако дизайн одного из них пока держится в секрете. Другой же представляет собой круговерть счетчиков, отображающих целых 28 усложнений: от всех возможных хронометрических функций и указателей календаря до компаса, термометра, гигрометра (прибора для измерения уровня влажности), барометра, счетчиков широты и долготы и индикатора времени прилива/отлива. И это не говоря уже о жизненно важных индикаторах состояния атомного термостата.

У Hoptroff в планах производство ряда новых продуктов, в числе которых электронная версия легендарных усложненных часов Space Traveller Джорджа Дэниэлса. Сейчас над ними ведется работа, цель которой - интегрировать в часы технологию Bluetooth для сохранения личной информации владельца и обеспечения автоматической настройки таких усложнений, как индикатор фаз Луны.

Первые экземпляры No.10 появятся уже в следующем году, а пока компания занимается поиском подходящих партнеров среди ретейлеров. “Мы, конечно, могли бы попытаться продавать их через Интернет, но это модель премиум-класса, поэтому, чтобы по достоинству оценить эти часы, их все же нужно подержать в руках. А значит, нам все-таки придется воспользоваться услугами ретейлеров, и мы готовы начать переговоры”, - говорит в заключение г-н Хоптрофф.

И даже Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Научный мир облетела сенсация – из нашей Вселенной… испаряется время! Пока это только гипотеза испанских астрофизиков. Но то, что течение времени на Земле и в космосе отличается, учеными уже доказано. Время под воздействием гравитации течет медленнее, ускоряясь при удалении от планеты. Задачу синхронизировать земное и космическое время выполняют водородные стандарты частоты, которые еще называют «атомными часами».

Первое атомное время появилось вместе с возникновением космонавтики, атомные часы появились в середине 20-х годов. Сейчас атомные часы стали обыденной вещью, ими ежедневно пользуется каждый из нас: с их помощью работает цифровая связь, ГЛОНАС, навигация, транспорт.

Владельцы мобильных телефонов едва ли задумываются о том, какая сложная работа в космосе проводится для жёсткой синхронизации по времени, а ведь речь идёт всего лишь о миллионных долях секунды.

Эталон точного времени хранится в Подмосковье, в Научном институте физико-технических и радио-технических измерений. Всего таких часов в мире – 450.

Монополистами на атомные часы являются Россия и США, но в США часы работают на основе цезия – радиоактивного металла, очень вредного для экологии, а в России – на основе водорода – более безопасного долговечного материала.

У этих часов нет циферблата и стрелок: они похожи на большую бочку из редких и ценных металлов, наполненную самыми передовыми технологиями – высокоточными измерительными приборами и аппаратурой с атомными стандартами. Процесс их создания очень долгий, сложный и проходит в условиях абсолютной стерильности.

Уже 4 года часы, установленные на российском спутнике, изучают тёмную энергию. По человеческим стандартам они теряют точность на 1 секунду за много миллионов лет.

Очень скоро атомные часы установят на Спектр-М – космическую обсерваторию, которая увидит как формируются звёзды и экзопланеты, заглянет за краешек чёрной дыры в центре нашей Галактики. По мнению учёных, из-за чудовищной гравитации время течёт здесь настолько медленно, что почти останавливается.

tvroscosmos