Озонатор воздуха – это препарат, который вырабатывает озон с помощью изменения молекулы кислорода О2 на О3 . Трехсоставный кислород назван озоном из-за его особого аромата свежести и дождя (озон в переводе с греческого означает «пахнущий»). Его свойства достаточно богаты, а исследование этого вещества началось с XIX века. За период этих исследований стали известны крайне интересные подробности, горячо обсуждаются свойства озонатора, которые стали использовать в качестве дезинфектора помещений.

Озон в природе

Всем известен приятный запах воздуха, который ощущается перед сильной грозой, когда соединения озона потоками сильного ветра частично опускаются в нижние слои атмосферы.

В лесу у реки, возле водопада, после дождя все чувствуют приятную свежесть, источник которой также является озон. Он появляется в воздухе во время разряда молнии, как источника энергии, образуя реакцию с кислородом. Озон появляется также под действием иных ультрафиолетовых лучей, которые вступают в реакцию с воздухом – например, под действием солнца.

Свойства озона уникальны. Находясь в верхних слоях атмосферы и в стратосфере, он защищает воздух от чрезмерного количества ультрафиолетовых лучей и космической радиации, губительной для здоровья человека и растительного мира .

Озон обладает высокой окисляющей способностью и при многих реакциях выделяет свободные радикалы кислорода – это позволяет обогащенному озоном воздуху обладать обеззараживающими свойствами. Но поэтому он и вреден: высокая окисляющая способность этого элемента делает озон высокотоксичным и опасным для организма. Так, если человек вдыхает высокие концентрации озона, то первым делом раздражаются его органы дыхания. Затем, при длительном воздействии на организм, происходит качественное изменение микроэлементов в составе крови человека и в первую очередь холестерина.

Под воздействием озона образуются нерастворимые формы холестерина, которые приводят к развитию атеросклероза . Вдыхание газа озона приводит также к тому, что подвергшиеся длительному воздействию его высоких концентраций особи мужского пола – как человеческие, так и животные – теряют способность к размножению из-за пагубного воздействия озона на половые клетки. Все это приводит к бесплодию.

В природе опасных доз озона для здоровья человека не концентрируется и его количество даже в самый дождливый день не превышает допустимую норму. Напротив, природный озон обогащает воздух кислородом, увеличивая его процентное соотношение, очищает его от вредных элементов. Этот газ безвреден и крайне полезен для организма при его естественной концентрации.

Но чем опасен озон для человека? Из-за его искусственного неконтролируемого добывания, в России озону присвоена первая, самая высокая категория опасности среди вредных веществ. Согласно закону, концентрация озона не должна превышать установленные нормы его содержания в воздухе до 0,16 мг/м³. Человеческое обоняние способно услышать озон в очень малых концентрациях – начиная с 0.01 мг/м³.
Обладая мощным бактериостатическим, противогрибковым и противоплесневым эффектом озон стал применяться искусственно, и разработка препаратов, вырабатывающих озон, встала на поток.

Открытые чудесные свойства озона и его добыча искусственным путем еще в XIX веке были направлены учеными в первую очередь на очищение воды. И сегодня вся Европа очищает свою водопроводную воду именно с помощью озонаторов. Со временем сфера его применения расширилась, так как стали известны новые сферы, где озон может принести пользу. Так, уже в Первую мировую войну озон применялся в роли антисептика при гнойных ранах, различных инфекциях и даже при туберкулезе .

Для добычи искусственного озона используют озонаторы, которые генерируют его с помощью электрического разряда. Его можно получить как из воздуха, так и из чистого кислорода. Добывание озона из кислорода используется не только в медицине, но и в косметологии.

Свойства искусственного озона позволяют применять его в качестве окисляющего реагента, им отбеливает бумагу, стерилизуют медицинские инструменты, используют в лабораторных условиях для получения целого ряда веществ. Озоном очищают масла, используют в качестве дезинфектора воды, воздуха, продуктов, предметов быта, одежды и проч. В медицине также используется озонирование растворов, которые применяются затем в медицинской практике как в инъекциях, так и наружно.

Повсеместное применение бытовых озонаторов стало комфортным решением в деле борьбы в загрязненных помещениях с грибком, плесенью и иными микроорганизмами, а также обработка одежды и предметов быта . В отличие от хлорирования обработка среды с помощью озона не вырабатывает токсины, однако вред озона таков, что даже незначительное превышение максимально возможной концентрации этого вещества становится крайне опасным для здоровья и может привести к преждевременной смерти. Поэтому при обработке помещений после вирусной и бактериальной инфекции, а также в других целях при использовании озонаторов следует тщательно соблюдать технику безопасности.

Если природный озон образуется при действии солнечных лучей на воздух и кислород в нем, то искусственные приборы чаще всего работают на электрическом разряде, который происходит в замкнутом пространстве. В зависимости от основного назначения прибора бывает медицинский, промышленный и бытовой озонатор. Предназначение каждого из них рассмотрим подробно.

Применение медицинского озонатора

Авторы озонотерапии убеждены, что большинство современных болезней формируется из-за нехватки в клетках кислорода, что является причиной ослабления иммунитета. Они нашли способ, как обогатить их своевременным питанием.

Для того чтобы выжить, здоровым клеткам необходим кислород в достаточном количестве, который питает их и обеспечивает существование . При неправильном образе жизни, когда отсутствует или блокируется нормальное поступление кислорода в клетки тканей – при малоподвижном образе жизни, неправильном питании, плохой экологии – развивается анаэробная инфекция. Анаэробы – это те микробы и вирусы, которые развиваются в условиях недостатка кислорода и могут существовать только в клетках и тканях, не насыщенных в достаточном количестве кислородом. Таким образом, попав в благоприятную среду, микроорганизмы начинают активно размножаться, что приводит к быстро развивающемуся поражению тканей. В клетках же в это время происходят необратимые процессы – они мутируют и погибают.

Истории наших читателей

Владимир
61 год

По версии лауреата Нобелевской премии доктора Варбурга, развитие рака может быть связано именно с таким нарушением дыхания клеток, при котором происходит их ферментация сахаром, вызванная анаэробными процессами.

По мнению некоторых исследователей, применение озонотерапии способствует заживлению даже очень сложных ран – в том числе после анаэробной инфекции, а также борьбе с онкологией.

Озонотерапия – физиотерапевтическое использование озона с помощью специальных приборов медицинского назначения – озонаторов. Приборы используются как дезинфицирующие средства. Их используют наружно, внутривенно, внутримышечно. При введении под кожу или в суставы его используют в чистом виде, но так как газ озон крайне токсичен, при других видах контакта с кровью его смешивают в физрастворами.

Медицинские озонаторы используют исключительно концентрированный кислород, добывая озон для лечебных целей. Специфическим лечебным свойством озона является его бактерицидное действие, которое действует на вирус всех групп герпеса, гепатита, СПИДа.

Но нужный эффект достигается только очень высокой концентрацией озона, которая для человека может стать опасной и даже существенно навредить – окислительная способность этого газа наносит организму непоправимый вред, а сверхсильный бактерицидный эффект способен привести к фатальному исходу. Поэтому концентрация и методы этой практики формулируются только опытными специалистами.

Применение промышленных озонаторов

Являясь в природе вторым по мощности после фтора окислителем, газ озон применяется не только в медицине, но и в промышленности.

Способность этого прибора обеззараживать широко используется, чтобы чистить воздух от микроорганизмов, содержать в чистоте оборудование и помещения. Такой озонатор отличается от бытового только своими размерами и мощностью . В зависимости от метража и уровня дезинфекции должны применяться определенные модели озонаторов.

Озонатор применяется, чтобы убрать неприятный запах и обогатить воздух кислородом. Он позволяет обеззаразить склады для продуктов питания и сами продукты, так как убивает плесень и бактерии. Это хорошая альтернатива обработке хлором, который достаточно ядовит и непригоден во многих отраслях пищевой промышленности. К тому же контактная влажная уборка намного более трудоемка и затратна, чем установка озонатора.

Применение озонатора способствует лучшему сохранению пищевых продуктов и увеличению срока их хранения за счет обеззараживающего эффекта и уничтожения тех организмов, которые вызывают гниение и порчу. Обрабатывание озоном в таких случаях дает легкий эффект консервации на ягоды, фрукты, овощи.

Еще одним немаловажным свойством озонатора является его способность уничтожать посторонние запахи. Результатом обработки этим препаратом всегда служит эффект дезодорации помещения с запахом свежего воздуха, как после дождя .

Высокая чувствительность к озону всевозможных грызунов позволяет без лишних затрат прогнать их из обрабатываемого помещения. Заслышав запах озона, они спешно бегут из зоны поражения, а те, что не убегают – погибают.

Озон используют для обработки холодильников: обеззараживают и также избавляют их от посторонних запахов. При обработке озонатором холодильника около часа достигается дезинфекция не только основной камеры, но и поддонов, решеток, крюков и прочих элементов. Это позволяет избегать частых размораживаний и обходиться без влажной механической дезинфекции небезопасным хлором, который выделяет при нанесении токсические соединения. При этом продукты, которые содержатся в камерах, можно также подвергнуть дезинфекции: например, мясные продукты увеличат свой срок годности после такой обработки и улучшится их качество.

Для увеличения срока годности продуктов также используется озонированная вода, получаемая с помощью воздействия озонатора на воду с определенной мощностью и периодичностью.

Применение бытового озонатора

В условиях малопроветриваемых, непроветриваемых помещений, где живут люди, а также в помещениях с кондиционерами и отопительными приборами существует проблема дефицита кислорода. В этих случаях на помощь приходит озонатор, который способен обогатить воздух кислородом при правильном применении. Озонаторы для дома набирают популярность, особенно когда дело касается проблемы пандемий гриппа. Дело в том, что этот прибор способен значительно упрощать жизнь простых людей в условиях плохой экологии и частых вирусных инфекций.

Озонатор уничтожает вирусы и обеззараживает предметы быта, если регулярно обрабатывать озоном комнаты, то воздух будет чистым и неопасным . К тому же помещение приобретет приятный свежий аромат. Озонатором очищают воду, продукты, решают с его помощью проблемы загрязнения стен плесенью. Неприятные запахи от табака, обуви, полотенец, занавесок и других предметов быта, загрязненных человеческой деятельностью, также устраняются с помощью этого волшебного прибора.

Озонированию можно подвергнуть все и вся – это зависит от фантазии, смекалки и желания получить полезный результат. Озонированной водой можно промывать раны, чтобы они быстрей зажили, обогащать лечебные мази, крема и прочие средства ухода за кожей, чтобы они приобрели повышенные заживляющие и регенерирующие свойства. Если выбрать озонатор с повышенной мощностью, то можно достичь более высоких концентраций озона, что позволит убивать бактерии и другие микроорганизмы наиболее быстро и тщательно. Это становится наиболее актуально, если дома находится больной человек – такая профилактика избавит от заражения и ускорит выздоровление, так как чистый воздух – это немаловажное лекарство. Также озон во время обеззараживания помещения не выделяет канцерогенных веществ, что выгодно отличает его от других, более распространенных способов дезинфекции. Распадаясь, озон превращается в молекулу кислорода, оксид углерода и другие компоненты чистого воздуха.

При озонировании воды происходит дезинфекция ее состава и нейтрализация многих вредных элементов – нефтепродуктов, пестицидов, гербицидов, моющих средств, канцерогенов . Тяжелые металлы после озонирования оседают на дно и достаточно слить воду без этого осадка, чтобы полностью избавиться от нежелательных компонентов. При этом естественный полезный состав не нарушается, а наоборот, обогащается кислородом. Такая очистка намного эффективнее фильтров, которые пропускают многие молекулы, и иных способов очищения.

Являясь сильным окислителем, озон убивает все микроорганизмы, содержащиеся в воде, не затрагивая при этом уровень pH воды и содержание минералов. Единственное, что необходимо сделать после озонирования – это подождать немного времени, чтобы дать озону распасться на безопасные соединения. Спустя минимум полчаса, а лучше через час, следует аккуратно перелить озонированную воду в чистую емкость, оставив самый нижний слой воды с осадком.

Осадок также остается на стенках емкости, в которой происходило озонирование. На глаз осадки могут быть малозаметны, однако их лучше не использовать в пищу . После всех манипуляций озонированную воду можно употреблять в сыром виде – она становится полезной для организма. В ней полностью отсутствуют органические вещества, которые отвечают за порчу воды, поэтому сроки хранения такой воды увеличиваются.

В отличие от промышленного озонатора бытовой озонатор не вырабатывает слишком высоких доз озона, что делает его сравнительно безопасным средством. Однако даже в концентрации до 5% в воздухе газ озон может оказать нежелательные воздействия и следует быть осторожным в его использовании.

Меры предосторожности

Озон в высокой концентрации крайне опасен для организма и из безобидного помощника в борьбе за здоровый образ жизни превращается в убийцу. Нельзя дышать озоном в момент, когда работает озонатор и следует тщательно соблюдать меры безопасности: выходить из обрабатываемого помещения, проветривать его после обработки. Окислительная способность озона, помимо пользы, несет с собой и огромный вред: вместе с болезнетворными бактериями и вирусами он способен уничтожить и полезные микроорганизмы, а также причинить вред слизистой и коже.

Попадание высоких концентраций озона в легкие могут спровоцировать серьезные заболевания. Поэтому принесет ли озонатор своему владельцу вред или пользу – целиком зависит от способа эксплуатации и взвешенному осторожному подходу. Необходимо хорошенько проветривать помещение после озонирования и только после этого приступать к его эксплуатации.

Озон в воздухе быстро распадается, превращаясь в кислород и насыщая им помещение . Поэтому при соблюдении необходимых мер безопасности вреда для организма можно полностью избежать. Для этого после озонирования и проветривания следует понюхать запах в комнате – если свежий аромат не достаточно сильный и не превышает концентрации выше, чем в естественных условиях – в горах, лесным утром или после сильной грозы – то опасаться нечего и можно наслаждаться чистым и свежим воздухом.

ОЗОН O3 (от греч. ozon-пахнущий) - аллотропная модификация кислорода, которая может существовать во всех трех агрегатных состояниях. Озон - нестабильное соединение, и даже при комнатной температуре медленно разлагается на молекулярный кислород, однако озон не является радикалом.

Физические свойства

Молекулярный вес = 47, 9982 г/моль. Газообразный озон имеет плотность 2,144 10-3 г/см3 при давлении 1 атм и 29° С.

Озон – вещество особое. Он крайне нестабилен и при повышении концентрации легко диспропорционирует по общей схеме: 2О3 -> 3О2.В газообразном виде озон имеет голубоватый оттенок, заметный при содержании в воздухе 15-20% озона.

Озон при нормальных условиях - газ с резким запахом. При очень низких концентрациях, запах озона ощущается как приятная свежесть, но с увеличением концентрации становится неприятным. Запах замерзшего белья - запах озона. К нему легко привыкнуть.

Основное его количество сосредоточено в так называемом "озонном поясе" на высоте 15-30 км. У поверхности земли концентрация озона значительно меньше и абсолютно безопасна для живых существ; существует даже мнение, что полное его отсутствие также отрицательно сказывается на работоспособности человека.

При концентрациях порядка 10 ПДК озон ощущается очень хорошо, но через несколько минут ощущение пропадает практически полностью. Это необходимо иметь в виду при работе с ним.

Однако озон обеспечивает и сохранение жизни на Земле, т.к. озоновый слой задерживает наиболее губительную для живых организмов и растений часть уф-излучения Солнца с длиной волны менее 300 нм, наряду с СО2 поглощает ик-излучение Земли, препятствуя ее охлаждению.

Озон сильнее кислорода растворим в воде. В воде озон разлагается значительно быстрее, чем в газовой фазе, причем исключительно большое влияние на скорость разложения оказывает наличие примесей, особенно ионов металлов.

Рис1. Разложение озона в различных видах воды при температуре 20°С (1 - бидистиллят; 2 - дистиллят; 3 - вода "из под крана"; 4 - фильтрованная озерная вода)

Озон хорошо адсорбируется силикагелем и алюмогелем. При парциальном давлении озона, например 20 мм рт. ст., и при 0° С силикагель поглощает около 0,19% озона по весу. При низких температурах адсорбция заметно ослабевает. В адсорбированном состоянии озон очень устойчив. Потенциал ионизации озона равен 12,8 эВ.

Химические свойства озона

Они отличаются двумя главными чертами - нестойкостью и окисляющей способностью. Примешанный к воздуху в малых концентрациях, он разлагается сравнительно медленно, но при повышении температуры разложение его ускоряется и при температуре более 100° С становится очень быстрым.

Присутствие в воздухе NO2, Cl, а также каталитическое действие окислов металлов - серебра, меди, железа, марганца - ускоряют разложение озона. Озон обладает столь сильными окислительными свойствами, поскольку один из атомов кислорода очень легко отщепляется от его молекулы. Легко переходит в кислород.

Озон окисляет при обычной температуре большинство металлов. Кислые водные растворы озона довольно устойчивы, в щелочных растворах озон быстро разрушается. Металлы переменной валентности (Mn, Co, Fe и др.), многие окислы, перекиси и гидроокиси эффективно разрушают озон. Большинство металлических поверхностей покрывается пленкой окисла в высшем валентном состоянии металла (например, PbO2, AgO или Ag2O3, HgO).

Озон окисляет все металлы, за исключением золота и металлов платиновой группы, реагирует с большинством других элементов, разлагает галогеноводороды (кроме HF), переводит низшие окислы в высшие и т. д.

Он не окисляет золото, платину, иридий, сплав 75%Fe + 25%Cr. Черный сернистый свинец PbS он обращает в белый сернокислый PbSO4, мышьяковистый ангидрид Аs2O3 - в мышьяковый As2O5 и т. д.

Реакция озона с ионами металлов переменной валентности (Мn, Сr и Со) в последние годы находит практическое применение для синтеза полупродуктов для красителей, витамина РР (изоникотиновая кислота) и др. Смеси солей марганца и хрома в кислом растворе, содержащем окисляемое соединение (например, метилпиридины), окисляются озоном. При этом ионы Сr3+ переходят в Сr6+ и окисляют метилпиридины только по метальным группам. В отсутствие солей металлов разрушается преимущественно ароматическое ядро.

Озон реагирует и со многими газами, которые присутствуют в атмосфере. Сероводород H2S при соединении с озоном выделяет свободную серу, сернистый ангидрид SO2 превращается в серный SO3; закись азота N2O - в окись NO, оксид азота NO быстро окисляется до NO2, в свою очередь NO2 также реагирует с озоном, причем в конечном счете образуется N2O5; аммиак NH3 - в азотноаммиачную соль NH4NO3.

Одна из важнейших реакций озона с неорганическими веществами - разложение им йодистого калия. Эта реакция широко используется для количественного определения озона.

Озон реагирует в ряде случаев и с твердыми веществами, образуя озониды. Выделены озониды щелочных металлов, щелочноземельных металлов: стронция, бария, причем температура их стабилизации растет в указанном ряду; Са(O3) 2 стабилен при 238 К, Ва(O3) 2 при 273 К. Озониды разлагаются с образованием надперекиси, например NaO3 -> NaO2 + 1/2O2. Различные озониды образуются также при реакциях озона с органическими соединениями.

Озон окисляет многочисленные органические вещества, насыщенные, ненасыщенные и циклические углеводороды. Опубликовано много работ по исследованию состава продуктов реакции озона с различными ароматическими углеводородами: бензолом, ксилолами, нафталином, фенантреном, антраценом, бензантраценом, дифениламином, хинолином, акриловой кислотой и др. Он обесцвечивает индиго и многие другие органические красители, благодаря чему им пользуются даже для отбелки тканей.

Скорость реакции озона с двойной связью С=С в 100 000 раз выше, чем скорость реакции озона с одинарной связью С-С. Поэтому от озона в первую очередь страдают каучуки и резины. Озон реагирует с двойной связью с образованием промежуточного комплекса:

Эта реакция идет достаточно быстро уже при температурах ниже 0°С. В случае предельных соединении озон является инициатором обычной реакции окисления:

Интересно взаимодействие озона с некоторыми органическими красителями, которые сильно флюоресцируют при наличии озона в воздухе. Таковы, например, эйхрозин, рибофлавин и люминол (триаминофталгидразид), и особенно, родамин-В и, сходный с ним родамин-С.

Высокие окислительные свойства озона, разрушающие органические вещества и окисляющие металлы (в особенности железо) до нерастворимой формы, способность разлагать растворимые в воде газообразные соединения, насыщать водные растворы кислородом, низкая стойкость озона в воде и самоликвидация его опасных для человека свойств - все это в совокупности делает озон наиболее привлекательным веществом для подготовки хозяйственной воды и обработки различных стоков.

Синтез озона

Озон образуется в газовой среде, содержащей кислород, если возникнут условия, при которых кислород диссоциирует на атомы. Это возможно во всех формах электрического разряда: тлеющем, дуговом, искровом, коронном, поверхностном, барьерном, безэлектродном и т.п. Основной причиной диссоциации является столкновение молекулярного кислорода с электронами, ускоренными в электрическом поле.

Кроме разряда диссоциацию кислорода вызывают УФ-излучение с диной волны менее 240 нм и различные частицы высокой энергии: альфа-, бета-, гамма - частицы, рентгеновские лучи и т.п. Озон получают также при электролизе воды.

Практически во всех источниках образования озона существует группа реакций, в результате которых озон разлагается. Они мешают образованию озона, но реально существуют, и их необходимо учитывать. Сюда входит термическое разложение в объеме и на стенках реактора, его реакции с радикалами и возбужденными частицами, реакции с добавками и примесями, которые могут контактировать с кислородом и озоном.

Полный механизм состоит из значительного числа реакций. Реальные установки, на каком бы принципе они ни работали, показывают высокие энергетические затраты на выработку озона. КПД генератора озона зависит от того, на какую – полную или активную – мощность рассчитывается единица массы образовавшегося озона.

Барьерный разряд

Под барьерным разрядом понимают разряд, возникающий между двумя диэлектриками или диэлектриком и металлом. Из-за того, что электрическая цепь разорвана диэлектриком, питание осуществляется только переменным током. Впервые озонатор, близкий к современным, был предложен в 1897 г. Сименсом.

При небольших мощностях озонатор можно не охлаждать, так как выделяющееся тепло уносится с потоком кислорода и озона. В промышленных производствах озон также синтезируют в дуговых озонаторах (плазмотроны), в генераторах озона тлеющего (лазеры) и поверхностного разряда.

Фотохимический способ

Основная доля произведенного на Земле озона в природе образуется фотохимическим способом. В практической деятельности человека фотохимические методы синтеза играют меньшую роль, чем синтезы в барьерном разряде. Главная область их использования - получение средних и малых концентраций озона. Такие концентрации озона требуются, например, при испытании резинотехнических изделий на устойчивость к растрескиванию под действием атмосферного озона. На практике для производства озона данным методом применяются ртутные и эксимерные ксеноновые лампы.

Электролитический метод синтеза

Первое упоминание об образовании озона в электролитических процессах относится к 1907 г. Однако до настоящего времени механизм его образования остается неясным.

Обычно в качестве электролита применяют водные растворы хлорной или серной кислоты, электроды изготовляют из платины. Использование кислот, меченных О18, показало, что они не отдают своего кислорода при образовании озона. Поэтому брутто-схема должна учитывать только разложение воды:

Н2О + O2 -> O3 + 2Н+ + e-

с возможным промежуточным образованием ионов или радикалов.

Образование озона под действием ионизирующего излучения

Озон образуется в ряде процессов, сопровождающихся возбуждением молекулы кислорода либо светом, либо электрическим полем. При облучении кислорода ионизирующей радиацией также могут возникать возбужденные молекулы, и наблюдается образование озона. Образование озона под действием ионизирующего излучения до настоящего времени не было использовано для синтеза озона.

Образование озона в СВЧ-поле

При пропускании струи кислорода через СВЧ-поле наблюдалось образование озона. Этот процесс мало изучен, хотя генераторы, основанные на этом явлении, часто используются в лабораторной практике.

Применение озона в быту и влияние его на человека

Озонирование воды, воздуха и других веществ

Озонированная вода не содержит токсичных галогенметанов - типичных примесей стерилизации воды хлором. Процесс озонирования проводят в барботажных ваннах или смесителях, в которых очищенная от взвесей вода смешивается с озонированным воздухом или кислородом. Недостаток процесса - быстрое разрушение О3 в воде (период полураспада 15-30 минут).

Озонирование применяют также в пищевой промышленности для стерилизации холодильников, складов, устранения неприятного запаха; в медицинской практике - для обеззараживания открытых ран и лечения некоторых хронических заболеваний (трофические язвы, грибковые заболевания), озонирования венозной крови, физиологических растворов.

Современные озонаторы, в которых озон получают с помощью электрического разряда в воздухе или в кислороде, состоят из генераторов озона и источников питания и являются составной частью озонаторных установок, включающих в себя, кроме озонаторов, вспомогательные устройства.

В настоящее время озон является газом, используемым в так называемых озоновых технологиях: очистка и подготовка питьевой воды, очистка сточных вод (бытовых и промышленных стоков), отходов газов и др.

В зависимости от технологии использования озона производительность озонатора может составлять от долей грамма до десятков килограмм озона в час. Специальные озонаторы применяются для газовой стерилизации медицинского инструментария и мелкого оборудования. Стерилизация осуществляется в искусственно увлажненной озонокислородной среде, заполняющей стерилизационную камеру. Цикл стерилизации состоит из стадии замещения воздуха в стерилизационной камере увлажненной озонокислородной смесью, стадии стерилизационной выдержки и стадии замещения озонокислородной смеси в камере микробиологически очищенным воздухом.

Озонаторы, применяемые в медицине для озонотерапии, имеют широкий диапазон регулирования концентрации озонокислородной смеси. Гарантированная точность вырабатываемой концентрации озонокислородной смеси контролируется системой автоматики озонатора и автоматически поддерживается.

Биологическое действие озона

Биологическое действие озона зависит от способа его применения, дозы и концентрации. Многие из его эффектов в разных диапазонах концентраций проявляются в различной степени. В основе лечебного действия озонотерапии лежит применение озонокислородных смесей. Высокий окислительно-восстановительный потенциал озона обуславливает его системное (восстановление кислородного гомеостаза) и локальное (выраженное дезинфицирующее) лечебное действие.

Впервые озон как антисептическое средство был использован А. Wolff в 1915 г. для лечения инфицированных ран. В последние годы озонотерапию успешно применяют практически во всех областях медицины: в неотложной и гнойной хирургии, общей и инфекционной терапии, гинекологии, урологии, гастроэнтерологии, дерматологии, косметологии и др. Использование озона обусловлено его уникальным спектром воздействия на организм, в т.ч. иммуномодулирующим, противовоспалительным, бактерицидным, противовирусным, фунгицидным и др.

Однако нельзя и отрицать, что методы использования озона в медицине, несмотря на явные преимущества по многим биологическим показателям, до сих пор широкого применения не получили. Согласно литературным данным высокие концентрации озона являются абсолютно бактерицидными практически для всех штаммов микроорганизмов. Поэтому озон используется в клинической практике как универсальный антисептик при санации инфекционно-воспалительных очагов различной этиологии и локализации.

В литературе встречаются данные о повышенной эффективности антисептических препаратов после их озонирования при лечении острых гнойных хирургических заболеваний.

Выводы относительно бытового использования озона

Прежде всего, нужно безоговорочно подтвердить факт применение озона в практике врачевания во многих областях медицины, как терапевтического и обеззараживающего средства, однако говорить о широком его применении пока не приходится.

Озон воспринимается человеком с наименьшими побочными аллергическими проявлениями. И даже если в литературе можно найти упоминание об индивидуальной непереносимости O3, то эти случаи никак не могут быть сопоставимы, например, с хлорсодержащими и прочими галогенопроизводными антибактериальными препаратами.

Озон - трёхатомный кислород и наиболее экологичен. Кому не знаком его запах “свежести” – в летние жаркие дни после грозы?! Постоянное присутствие его в земной атмосфере испытывает на себе любой живой организм.

Обзор составлен по материалам сети Интернет.

Крайне ценными для всего человечества свойствами обладает такой газ, как озон. Химический элемент, которым он образован, - О. На самом деле, озон О 3 - одна из аллотропных модификаций оксигена, состоящая из трёх формульных единиц (О÷О÷О). Первое и более известное соединение - это сам кислород, точнее газ, который образован двумя его атомами (О=О) - О 2 .

Аллотропия - это способность одного химического элемента образовывать ряд различных по свойствам простых соединений. Благодаря ей человечество изучило и использует такие вещества, как алмаз и графит, моноклинная и ромбическая сера, кислород и озон. Химический элемент, имеющий такую способность, не обязательно ограничен только двумя модификациями, у некоторых их больше.

История открытия соединения

Составляющая единица многих органических и минеральных веществ, в том числе и такого как озон - химический элемент, обозначение которого О - оксиген, в переводе с греческого «oxys» - кислый, и «gignomai» - рождать.

Впервые новую во время опытов с электрическими разрядами обнаружил в 1785 году голландец Мартин ван Марун, его внимание привлёк специфический запах. А веком позже француз Шенбейн отметил присутствие такого же после грозы, в результате чего газ был назван «пахнущий». Но учёные несколько обманулись, считая, что их обоняние учуяло сам озон. Запах, который они чувствовали, принадлежал окисленным при взаимодействии с О 3 , так как газ очень реакционноспособен.

Электронное строение

Один и тот же структурный фрагмент имеют О2 и О3 - химический элемент. Озон имеет более сложное строение. В кислороде же всё просто - два атома оксигена соединены двойной связью, состоящей из ϭ- и π-составляющей, согласно валентности элемента. О 3 имеет несколько резонансных структур.

Кратная связь соединяет два кислорода, а третий имеет одинарную. Таким образом, вследствие миграции π-составляющей, в общей картине три атома имеют полуторное соединение. Эта связь короче, чем одинарная, но длиннее, чем двойная. Вероятность цикличности молекулы проведённые учёными эксперименты исключают.

Методы синтеза

Для образования такого газа, как озон, химический элемент оксиген должен находиться в газообразной среде в виде отдельных атомов. Такие условия создаются при соударении молекул кислорода О 2 с электронами во время электрических разрядов или другими частицами с большой энергией, а также при его облучении ультрафиолетом.

Львиная доля от общего количества озона в естественных условиях атмосферы образуется фотохимическим способом. Человек предпочитает в химической деятельности использовать другие методы, такие как, например, электролитический синтез. Он заключается в том, что в водную среду электролита помещают платиновые электроды и пускают ток. Схема реакции:

Н 2 О + О 2 → О 3 + Н 2 + е -

Физические свойства

Кислород (О) - составная единица такого вещества как озон - химический элемент, формула которого, а также относительная молярная масса указаны в таблице Менделеева. Образуя О 3 , оксиген приобретает свойства, кардинально отличающиеся от свойств О 2 .

Газ голубого цвета - это обычное состояние такого соединения, как озон. Химический элемент, формула, количественные характеристики - все это определили при идентификации и изучении данного вещества. для него -111,9 °C, сжиженное состояние имеет темно-фиолетовый окрас, при дальнейшем понижении градуса до -197,2 °C начинается плавление. В твёрдом агрегатном состоянии озон приобретает чёрный цвет с фиолетовым отливом. Растворимость его в десять раз превышает это свойство кислорода О 2 . При самых незначительных концентрациях в воздухе чувствуется запах озона, он резок, специфичен и напоминает запах металла.

Химические свойства

Очень активным, с реакционной точки зрения, является газ озон. Химический элемент, который его образует - это кислород. Характеристики, определяющие поведение озона во взаимодействии с другими веществами, - это высокая окисляющая способность и неустойчивость самого газа. При повышенных температурах он разлагается с небывалой скоростью, процесс ускоряют и катализаторы, такие как оксиды металлов, азота и другие. Свойства окислителя присущи озону благодаря особенностям строения молекулы и подвижности одного из атомов оксигена, который отщепляясь, превращает газ в кислород: О 3 → О 2 + О·

Оксиген (кирпичик, из которого построены молекулы таких веществ, как кислород и озон) - химический элемент. Как пишется в уравнениях реакции - О·. Озон окисляет все металлы, за исключением золота, платины и его подгруппы. Он реагирует с газами, находящимися в атмосфере - оксидами серы, азота и прочими. Не остаются инертными и органические вещества, особенно быстро идут процессы разрывов кратных связей через образования промежуточных соединений. Крайне важно, что продукты реакций являются безвредными для окружающей среды и человека. Это вода, кислород, высшие оксиды различных элементов, окислы углерода. Во взаимодействие с озоном не вступают бинарные соединения кальция, титана и кремния с кислородом.

Применение

Основная область, где применяется «пахнущий» газ - это озонирование. Подобный метод стерилизации гораздо эффективнее и безопаснее для живых организмов, чем дезинфекция хлором. При не происходит образование токсичных производных метана, замещенных опасным галогеном.

Всё чаще такой экологический метод стерилизации находит применение в пищевой отрасли промышленности. Озоном обрабатывают холодильное оборудование, складские помещения для продуктов, с помощь него проводят устранение запахов.

Для медицины дезинфицирующие свойства озона также незаменимы. Им обеззараживают раны, физиологические растворы. Озонируют венозную кровь, а также «пахнущим» газом лечат ряд хронических заболеваний.

Нахождение в природе и значение

Простое вещество озон - элемент газового состава стратосферы, области околоземного пространства, расположенной на расстоянии порядка 20-30 км от поверхности планеты. Выделение этого соединения происходит во время процессов, связанных с электрическими разрядами, при сварке, работе аппаратов ксерокса. Но именно в стратосфере образуется и содержит 99% от общего количества озона, находящегося в атмосфере Земли.

Жизненно важным оказалось присутствие газа в околоземном пространстве. Он образует в нем так называемый озоновый слой, который защищает всё живое от смертельного ультрафиолетового излучения Солнца. Как ни странно, но наравне с огромной пользой, сам газ опасен для людей. Повышение концентрации озона в воздухе, которым дышит человек, вредно для организма, вследствие его крайней химической активности.